A new approach to field modelling

Language:
de dk es fr it cz ru cn


RSS Twitter Facebook Linkedin YouTube

>> >>

Charged particle trajectory in the uniform static electric field. Case: cylindrical.

Problem Type:
Axisymmetric problem of electrostatics.

Geometry:

Particle trajectory in static electric field. Axial field.

Given:
Relative permittivity of vacuum ε = 1;
Positive potential U+ = 20 V.
Charge (electron) q = -1.602e-19 C
Mass (electron) m = 9.109e-31 kg
Initial velocity vy = 500 000 m/s; vz = vφ = 0 m/s.
Emitter position (0; 0; 0).

Problem:
Calculate the charged particle trajectory neglecting relativistic effects.

Solution:
The analytical solution is a parabola
x(t) = 0,
y(t) = vy * t,
z(t) = 0.5 * Fz / m * t2,
where Fz - is the z-component of the Lorentz force,
            t - is time.

Particle trajectory may be calculated using the built-in function in QuickField Electrostatic postprocessor or by the free tool TrajectoryTracer.

Results:
Electric field strength Ez = -20 V/m, Er = 0 V/m

Lorentz force Fz = q * Ez = -1.602e-19 * -20 = 3.204e-18 N. x(t) = 0 m,
y(t) = 500000*t m,
z(t) = 0.5*3.204e-18/9.109e-31 *t2 m.

Particle coordinates (x; y; z) m

time

Theory

QuickField

TrajectoryTracer tool

0 s

(0; 0; 0)

(0; 0; 0)

(0; 0; 0)

1e-7 s

(0; 0.050; 0.018)

(0; 0.050; 0.018)

(0; 0.050; 0.018)

2e-7 s

(0; 0.100; 0.070)

(0; 0.100; 0.070)

(0; 0.100; 0.070)

3e-7 s

(0; 0.150; 0.158)

(0; 0.150; 0.158)

(0; 0.150; 0.158)

4e-7 s

(0; 0.200; 0.281)

(0; 0.200; 0.281)

(0; 0.200; 0.281)

5e-7 s

(0; 0.250; 0.440)

(0; 0.250; 0.440)

(0; 0.250; 0.440)

View movie Download video.

Watch online on YouTube.

Download Download simulation files.