A new approach to field modelling

Language:
de dk es fr it cz ru cn


RSS Twitter Facebook Linkedin YouTube

>> >> >>

Charged particle trajectory in the uniform static magnetic field. Case: cylindrical.

Problem Type:
Axisymmetric problem of DC magnetics.

Geometry:

Particle trajectory in static magnetic field. Axial field.

Given:
Relative permeability of vacuum μ = 1;
External field flux density Bz = -4 mT;
Charge (electron) q = -1.602e-19 C;
Mass (electron) m = 9.109e-31 kg;
Initial velocity (vx;vy;vz) = (0; 5e6; 5e6) m/s.
Emitter position (0; 0; 0).

Problem:
Calculate charged particle trajectory in magnetic field neglecting relativistic effects.

Solution:
The analytical solution gives the spiral trajectory.
Radius in XY-plane RXY = vy / Bz * m/q [m].
Period T = 2π / Bz * m/q [s].
Lorentz force Fφ = q*vy*Bz [N].

To calculate the particle trajectory in QuickField free tool TrajectoryTracer is used.

Results:
Analytical solution:
Radius in XY-plane RXY = (5e6/0.004) * (9.109e-31/1.602e-19) = 0.00711 m.
Period T = (2*3.142/0.04) * (9.109e-31/1.602e-19) = 8.93e-9 s.
Lorentz force Fφ = 1.602e-19 * 5e6 * 0.04 = 3.20e-15 N

TrajectoryTracer tool:
Radius in XY-plane RXY = 0.14215/2 = 0.00711 m.
Period T = 4.47e-9*2 = 8.94e-9 s.
Lorentz force Fφ = 3.20e-15 N.

charged particle in magnetic field simulation

Download PDF icon View simulation report in PDF.

Download Download simulation files (files may be viewed using any QuickField Edition).

There are no restrictions applied to the QuickField Student Edition postprocessors.
You can view field maps, make plots, calculate integrals and print pictures in the same way that the Professional Edition users do.