
Overview: MATLAB as an Automation Client

MATLAB is able to serve as COM-client (on Windows platform only) as described in "MATLAB COM Client Support" section of the
MATLAB help. Good example shows how to control MS Excel from MATLAB could be found on MATLAB site:
http://www.mathworks.com/access/helpdesk/help/techdoc/matlab_external/f62644.html#f62659

Accessing Objects

No special action required to let MATLAB know about QuickField type library. The only thing you need to do before writing the
MATLAB code is switching working directory to the folder where your code is located.

Each MATLAB variable can hold a handle to a COM object. The handle can be obtained by two ways:

A COM object can be directly created by the MATLAB function actxserver;1. 

An object can be obtained as result of invoking a methods or property of another object.2. 

QuickField provides only one object that should be created directly: the Application object. Each program using QuickField shod
create a single Application object as following:

QF = actxserver ('QuickField.Application');

As result of above line the QF variable holds a handle to the Application object. This command either starts QuickField application
or returns the handle of the already running application. All other QuickField objects are accessible by properties of Application or
other objects. E.g. the main window of QuickField can be obtained by the MainWindow property of the Application object:

mainWnd = QF.MainWindow;

Using Object's Properties

The MATLAB provides two different syntaxes for setting and getting the value of a property. E.g. when we have to get the value of 
DefaultFilePath property of an Application object we can write:

thePath = QF.DefaultFilePath;

where
QF is a variable holding the handle of Application object,
thePath is a variable receives the value of DefaultFilePath property.

The trailing semicolon blocks output to the MATLAB command window.

For setting the new value to a property we can use similar syntax vise versa:

QF.DefaultFilePath = 'C:\My Documents\MyProblems';

Another syntax for accessing to object's property uses get/set function. The first example may be rewritten as

thePath = QF.get ('DefaultFilePath');            % getting the value
QF.set ('DefaultFilePath', 'C:\My Documents\MyProblems');    % setting the value

In both cases the first parameter of get/set functions is a string containing the property name. If the property is indexed (i.e. has
one or more parameters), the parameters follow by the property name separated by comma. This syntax seems a bit ugly, but it is

the only way of using an indexed property.

Invoking Method

Let us create a Point with coordinates (3, 2). It can easily be done by the PointXY method of the Application object. Coordinates of
newly created point are parameters of the PointXY method.

The simple syntax looks as simple as:

myPoint = QF.PointXY (3, 2);

where myPoint variable receves a handle to newly created point; QF - is a QuickField.Application object.

Another syntax uses the invoke function:

myPoint = QF.invoke ('PointXY', 3, 2);

similarly to the get function the first parameter is the method's name, while other a parameter passed to the calling method.

Using Named Constants

Many properties and methods use named constants (enumeraton members) as a parameter. In MATLAB name the name of a

constant should be enclosed in single quotes just like as a string:

force = res.GetIntegral ('qfInt_MaxwellForce', win.Contour).Abs;

There 'qfInt_MaxwellForce' is a single quoted name of a constant, which is a member of QfIntegrals enum.

In the example above actually three ActiveField methods are called:

GetIntegral method of the Result object;1. 

Contour property of the FieldWindow object;2. 



Abs property of the Quantity object returned by the GetIntegral method.3. 

For unclear reasons MATLAB 7.0.1 (R14) Service Pack 1 does not accepts named constant as a parameter of indexed property. So,
we have to use its numerical value instead. The numerical values for named constants may be obtained from ActiveField help.

Optional Parameters

Many of QuickField methods and properties have one or more optional parameters. Generally MATLAB not allows to omit optional
parameters. You must use them explicitly.

For example, the Kxx and Kyy properties of the LabelBlockMS and LabelBlockES objects have an optional parameter Absolute of
boolean type. By default its value is false. In MATLAB when assigning a relative permeability value 1 to the label contents we write:

cntBlock.set ('Kxx', false, 1);
cntBlock.set ('Kyy', false, 1);

where cntBlock is the variable containing a handle of LabelBlockMS object.

C-Shaped Magnet (Language: MATLAB)

Lesson 1: Using the existing problem

You can find the complete Mag1 Tutorial sample in the following folders:

"..\ActiveField\Tutorial\Lesson1\VB_Code\" - the Visual Basic 6.0 version

"..\ActiveField\Tutorial\Lesson1\VBA_Code\" - VBA version (for MS Excel 2002)

"..\ActiveField\Tutorial\Lesson1\C#_Code\" - C# version (Visual Studio 7 required)

"..\ActiveField\Tutorial\Lesson1\C++_Code\" - C++ version with VS7 project.

"..\ActiveField\Tutorial\Lesson1\VB.NET_Code\" - Visual Basic 7 (Visual Basic .NET) version

"..\ActiveField\Tutorial\Lesson1\Delphi_Code\" - Borland Delphi version, tested on Borland Delphi 7

The comments below describe writing code on MATLAB 7.0. The code was tested with MATLAB 7.0.1.24704 (R14) Service Pack 1.

Working with a parametric model, generally we have to do the following:

Step 1: Open an existing QuickField problem :
the Magh1.pbm problem in the QuickField\Examples folder.

Step 2: Modifying the geometric model.
We have to locate the steel keeper block, move it to desired position, rebuild the finite element mesh and save the model.

Step 3: Modifying the physical properties.
We might also want to modify some of the physical properties, field sources or boundary conditions. In our case we will change
the coercive force of ALNICO magnet.

Step 4: Solving the problem.
Solve the problem and obtain results.

Step 5: Analyzing result: evaluating local and integral quantities.
In order to get the mechanical force value we have to build a closed contour surrounding the steel keeper and calculate an
integral field value.

Conclusion
User Interface, the final code and references.

Step 1: Launching QuickField application.

Now we are ready to operate with QuickField objects. The very first object we always get is QuickField.Application object. The
Application object provides access to all other objects, so it is a good idea to declare it as a global level variable in our project.

global QF;

function Main()
' Here we will write our code

 QF = actxserver ('QuickField.Application');
   QF.MainWindow.Visible = True

  .................

The special MATLAB function actxserver is used for creating an object of the QuickField.Application type. The handle of created
object is assigned to the QF variable. If the QuickField.exe is already running, the actxserver function returns a running object. If
not, it launches the new instance of QuickField.exe. Only the Application object should be created by actxserver function. All other
ActiveField object area created by designated properties of Application and other objects.

For some reasons QuickField may failed to launch. So, it is a good idea to put the call of actxserver function inside a try/catch block:

try
  QF = actxserver ('QuickField.Application');
catch
  error ('QuickField cannot start');
end



QF.MainWindow.Visible = true;    % make the QuickField main window visible

% display the welcome message
message = sprintf ('QuickField %s started', QF.Version);
disp (message);

The first line describes QF as a global variable holding an Application object. If the QuickField.exe is already running, the standard
Visual Basic CreateObject function returns a running object. If not, it launches the new instance of QuickField.exe.

Now you can put the code above into your MATLAB editor window and run it. For our educational purposes the most convenient way
is running the code line by line in debug mode. So, set a breakpoint onto first executable line of code (F12) and choose Debug ->
Run command (F5). Another way to learn with ActiveField technique is executing command one by one directly entering them into
MATLAB command window.

Step 2: Open an existing QuickField documents (problem, geometric model and properties document).

When we have an Application object, open the desired QuickField document is a very straightforward task. There are several
documents collection one for each document kind. Consider the following code:

global QF;

function MyMacro()
' Here we will write our code

    QF = actxserver ('QuickField.Application');
    QF.MainWindow.Visible = true;

    ' Open the Magn1.pbm problem
prb = QF.Problems.Open ('H:\QuickField\Examples\Magn1.pbm');

After executing Problems.Open method the prb variable holds an object ofQuickField.Problem type. It becomes the newly problem
loaded from the Magn1.pbm file.

An argument of the Open method is fully qualified name of the problem document. Another possibility is first setting the
DefaultFilePath property to the desired folder:

QF.DefaultFilePath = 'H:\QuickField\Examples';
prb = QF.Problems.Open ('Magn1.pbm');

Step 4: Modifying the geometric model.

Using the QuickField graphic user interface we load the model for editing from the problem tree view. With QuickField programming

interface we do almost the same. The LoadModel method loads the Model document associated with the problem into QuickField and
then it is accessible by the Model property.

It is worthy to put the geometric manipulation code into a separate function in order to call it with different parameters.

First of all we should to declare a variable as QuickField.Model to hold the Model object. Then we get the geometric model object
using LoadModel method and Model property of the QuickField Problem object.

Our plan of geometric modification looks like following:

Open the geometry model and remove the finite element mesh;1. 

Locate and remove the block labeled as 'Steel Keeper' in its previous position;2. 

Add four edges constitutes the rectangular steel keeper is a new position;3. 

Assign the label to newly created block;4. 

Build the mesh, save the ready model, and close it.5. 

function MoveKeeper (prb, left, bottom)
% modifies position of the steel keeper
% Global data
%
global skHigh; % Keeper's height
global skWidth; % Keepers width
% QuickField objects
global QF; % the QuickField application
    prb.LoadModel;
    mdl = prb.Model; % get the geometry model
     

%     The Shapes collection that contains all the geometrical entities in the model
%     provides methods for adding edges and vertices
mdl.Shapes.RemoveMesh;

   '  Delete the old Steel Keeper
mdl.Shapes.get ('LabeledAs', '', '', 'Steel Keeper').Delete;
'  Add the rectangle consisting of four edges
mdl.Shapes.AddEdge (QF.PointXY (left, bottom), QF.PointXY(left, bottom + skHigh));
mdl.Shapes.AddEdge (QF.PointXY (left, bottom + skHigh), QF.PointXY(left + skWidth, bottom + skHigh));
mdl.Shapes.AddEdge (QF.PointXY (left + skWidth, bottom + skHigh), QF.PointXY(left + skWidth, bottom));
mdl.Shapes.AddEdge (QF.PointXY (left + skWidth, bottom), QF.PointXY(left, bottom));

        '    Locate the newborn block and assign label to it
foundShapes = mdl.Shapes.get ('Nearest', QF.PointXY (left + skWidth / 2, bottom + skHigh / 2));
foundShapes.Blocks.Item (1).Label = 'Steel Keeper';
' Build the FEM mesh in the entire model
mdl.Shapes.BuildMesh;



     
    ' Save the ready geometry model
    mdl.Save;
    ' and close the model window
    mdl.Close;

' it is also a good idea to release all non necessary objects
    mdl.release;

Most of operation with model we make with the Shapes object - a collection contains all the geometric entities in the model. The

Delete method is used to remove the block labeled as "Steel Keeper". Please note the way we use to locate the block: LabeledAs
property returns the collection of objects with the same label - just like a mouse click on the label in a problem tree view.

Then we add four edges building the rectangular block. For dimensioning it we use left and bottom parameters describing the block
position and skWidth and skHigh global variables hold block's dimensions. Note that AddEdge method requires two Point objects as
parameters. We employ an auxiliary PointXY method of the Application object to create new Point with coordinates we need.

When the edges are built we have to locate a newborn block and assign it the name. The most convenient way to find a block is the
Nearest property returns the nearest Block, Edge and Vertex to the given point. The Label property sets and returns the object's
label.

Before finish with geometric model, we build the finite element mesh (BuildMesh method) and then save and close the model
document.

Step 3: Modifying the physical properties.

Let as imagine what we have to study the influence of the coercive force of ALNICO magnet on the mechanical force. In that case we
have to modify label properties. Here you can see a procedure setting given value of coercive force to both magnet labels: "ALNICO
up" and "ALNICO down".

function SetCoerciveForce (prb, Hc)
% Sets the value of coercive force of the magnet to 'ALNICO up' and 'ALNICO down' block labels
% Global data
global QF; % the QuickField application

    blockLabels = prb.Labels ('qfBlock');
    '    Get the desired label
    lab = blockLabels.invoke ('Item', 'ALNICO up');
    '    Get label's content for editing
    labCnt = lab.Content;
    '    Modify contents
    labCnt.Coercive = QF.PointRA(Hc, pi / 2);
    '    Put modified content back to the label
    lab.Content = labCnt;

    '    Do the same with another label
    lab = blockLabels.invoke ('Item', 'ALNICO down');
    labCnt = lab.Content;
    labCnt.Coercive = QF.PointRA(Hc, -pi / 2);
    lab.Content = labCnt;
    '    Save the data document
    lab.DataDoc.Save;

The most important object here are the Label object and its contents, in our case the LabelBlockMS. To modify some physical data

we have to find the label in one of Labels collection, get it contents using Contents property, modify properties provided by the
Contents object, and finally put it back into the Label object.

The exact type of the Contents object depends upon the kind of QuickField problem (electrostatic, magnetostatic and so on) and
geometric object the label is applied to (block, edge or vertex). In our case we are working with block labels for magnetostatic
problem, so our contents object is of the LabelBlockMS type.

When finish editing the labels we should save the corresponding data document. Each label knows which document it belongs to: use
the DataDoc property.

Step 4: Solving the problem.

When the model and data are ready and corresponding documents have been saved, it's time to start solving. The simplest way to
do it is using SolveProblem method of the Problem object. It is a good idea to check if the model and data are ready for solving by
the CanSolve property, which returns true if everything seems okay. The Solved property let us known whether the problem is

solved.

% The problem is fully defined.
% solve it and calculate the magnetic force
if prb.CanSolve
    prb.SolveProblem;
end

if prb.Solved
    prb.AnalyzeResults;
    % Calculation of the mechanical force is discussed later in this chapter
    force (i) = CalculateForce (prb.Result, xPos, yPos);
end

This approach is quite enough if the solving time is rather short. When the solving process lasts for several minutes or more, you
probably want your application to do something else at the same time. In such situation you can use the asynchronous version of the
SolveProblem method:
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prb.SolveProblem (true);

Here we set the NoWait parameter as true instead of its default value false. In such case the SolveProblem method returns control

just after the solving process started. You can also have more control for the separate solving process by the special SolvingState
object:

% the state object provides information about solving process
state = prb.SolveProblem (true);

Step 5: Analyzing result: evaluating local and integral quantities.

When the problem is solved we can start the postprocessor for viewing and analyzing results. To start the postprocessor use the
AnalyzeResults method of the Problem object. After that we can get a Result object gives access to all other postprocessing objects.
Result object maintains the collection of postprocessor windows. Among them are FieldWindow object for the field picture,

XYPlotWindow for xy-charts and TableWindow for tabulating of field quantities along the contour.

As with graphical user interface we can build a Contour in the FieldWindow, which can be used for calculating integral quantities,
viewing the xy-charts and tabulating.

We put all the code concerning the force calculation in the CalculateForce function:

    ..........
if prb.Solved
    prb.AnalyzeResults;
    force (i) = CalculateForce (prb.Result, xPos, yPos);
end

function force = CalculateForce (res, left, bottom)
    % Builds the integration contour surrounding the steel keeper and calculates magnetic force
    % Parameters:
    %     res - the QuickField.Result object
    %     left - x-coordinate of bottom-left corner of the steel keeper
    %     bottom - y-coordinate of bottom-left corner of the steel keeper

    % QuickField objects
global QF;         % the QuickField application
global skHigh;     % Keeper's height
global skWidth;    % Keepers width

    win = res.GetFieldWindow (1); % the FieldWindow

    win.Contour.AddLineTo (QF.PointXY (left - 5, bottom - 0.5));
    win.Contour.AddLineTo (QF.PointXY (left + skWidth + 5, bottom - 0.5));
    win.Contour.AddLineTo (QF.PointXY (left + skWidth + 5, bottom + skHigh + 5));
    win.Contour.AddLineTo (QF.PointXY (left - 5, bottom + skHigh + 5));
    win.Contour.AddLineTo (QF.PointXY (left - 5, bottom - 0.5));

    force = res.GetIntegral('qfInt_MaxwellForce', win.Contour).Abs;

Here we get a first field picture window from the Result object (the active window is always a first one in the collection) and build the

Contour in it, surrounding the steel keeper. To add a line to contour we use the AddLineTo method. The contour appears closed
because the last edge's end point is the same as the start point of the first edge.

Having a closed contour we can calculate the force acting on the body(-es) inside it. For this we use a GetIntegral method of the

Problem object. It returns an integral quantity as Quantity object that wraps physical values of several types. The Abs property of the
Quantity object return its absolute value (magnitude).

Conclusion

Now our code is almost complete.
We present result of calculation in two forms: a table and a plot.

The DisplayResult function generates table output to the MATLAB command window

function DisplayStepResult (pos, force)
% Displays calculation result

    disp (sprintf ('Position = %g, Force = %g', pos, force));

The code displays a simple xy-plot of force versus position looks like following:

% plot the resulting curve
figure ('Name', 'Force acting on the Keeper', 'NumberTitle', 'off');
plot (pos, force, '--rs', 'MarkerEdgeColor','k','MarkerFaceColor', 'g', 'MarkerSize',5);
ylabel ('Vertical Force, (N)');
xlabel ('Keeper Y-position, (mm)');

The following MATLAB plot is generated:



The entire code of this sample consist of three MATLAB files located in the ..\ActiveField\Tutorial\Lesson1\MATLAB_Code\ folder and
consist of three files:

Lesson1.m
initializes global values, calls DoCalculation function and plots result;

1. 

DoCalculation.m
does the main calculation work;

2. 

RunQF.m
reusable function for starting QuickField server.

3. 

C-Shaped Magnet (Language: MATLAB)

Lesson 2: Creating a new problem

Here we will continue with C-Shaped magnet described in the Lesson 1. To go further, now we consider all the geometric properties
as variable. Our model becomes fully parametric.

The discussion is divided into six steps:

Step 1: Problem formulation

First of all we learn the problem formulation and the sketch of geometry model.

Step2: Program structure
Here we discuss the program structure, user interface and common variables declaration.

Step 3: Creating a new QuickField problem

Here we learn how to create a new problem and set its properties.

Step 4: Building a geometric model.
Now we have to create a new geometric model document, build the geometric model, assign labels to the blocks and edges,
generate the mesh and save it.

Step 5: Working with data labels.
The next step is assigning values to the field sources, boundary condition and media properties for each model label.

Step 6: Analyzing the solution
Now is time to solve the problem and calculate the magnetic force, acting on the steel keeper.

What's More:
How we can develop the program further.

Step 1: Problem formulation



You can see the MATLAB version of this sample in the
..\ActiveField\Tutorial\Lesson2\MATLAB_Code\.. folder.

Step2: Program structure

In the following chapters will discuss the MATLAB (m-language) version of our small project. We do not concern graphical user

interface in order to focus on interaction between MATLAB and QuickField technique

The MATLAB project consists of three modules:

The main module Lesson2.m defines input data as a global variables, assigns values to them, calls the main calculation
function, and then prints the result.

1. 

The calculation module DoCalculation.m performs all the calculation work;2. 

The RunQF.m module contains a reusable auxiliary function used for starting QuickField server.3. 

The main module Lesson2.m declares all variables used as input data and assigns default value for each of them:

% Global data
%
% QuickField objects
global QF;             % the QuickField application
% Set of geometric dimensions
global yokeWidth;
global yokeHeight;
global maghetWidth;
global magnetHeight;
global keeperWidth;
global keeperHeight;
global airGap;
% Physical data
global Hc;             % Coercive force of the magnet

% Initial values for global data
yokeWidth = 80;
yokeHeight = 20;
maghetWidth = 20;
magnetHeight = 20;
keeperWidth = 80;
keeperHeight = 40;
airGap = 10;
Hc = 147218;

force = DoCalculation ();    % Call the main calclation function
disp (sprintf ('Force = %g', force));    % print the result

The DoCalculation.m file organised into several function. The first of them, named DoCalculation is the primary m-file function. The
rest are subfunctions, only intended to be called by primary function. The primary function orchestrates the calculation process as
following:

function force = DoCalculation ()
% Builds the QuickField problem from scratch, solve it and calculates the mechanical force.
%
% Global data % QuickField object
global QF;         % the QuickField application

    QF = RunQF (true);
    % We will create the Magn1.pbm problem
    % in Magn1 subfolder under your Matlab project folder
    QF.DefaultFilePath = fullfile (pwd, 'Magn1');

    prb = CreateProblem ();                         % Create a new QuickField problem
    BuildGeometry (prb.get ('ReferencedFile', 0));  % Build the geometry model with FE mesh 
    SetData (prb);                                  % Set media properties and boundary conditions
    Solve (prb);                                    % Run solver
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    ViewResults (prb);                              % Show the field picture
    force = CalculateForce (prb);                   % Calculate mechanical force

    QF.Quit ();                                     % Finish QuickField program
    QF.release;                                     % Clean up

Please note the line that called the BuildGeometry subfunction:

BuildGeometry (prb.get ('ReferencedFile', 0));  % Build the geometry model with FE mesh 

This function receives the file name of the geometry model as an input parameter. To get the geometry file name from the Problem
object we use the ReferencedFile property. In this line the get-syntax of calling the property is used, because the ReferencedFile
is an indexed propery, i.e it requires an input parameter. According to ActiveField rules, the input parameter of the ReferencedFile
property is of type QfProblemFiles. In our case it should have the 'qfModelFile' value. For unclear reasons MATLAB 7.0.1 (R14)
Service Pack 1 does not accepts named constant as a parameter of indexed property. So, we have to use its numerical value (0)
instead. The numerical values for named constants may be obtained from ActiveField help.

Concerning the internal structure of our small application, we will learn following things:

Step 3: Creating a new QuickField problem.

Creating of the Problem is very straightforward task: first we add a new empty problem by the Add method of the Problems
collection, and then set desired properties for it. The last thing we have to do with new problem is saving it to the disk file. Newly
created problem does not have a file name, so we should use SaveAs method.

function prb = CreateProblem ()
% Creates a problem
%
global QF;             % the QuickField application

    prb = QF.Problems.Add ();                 % Create an empty problem
    prb.ProblemType = 'qfMagnetostatics';     % Set the analysis type
    prb.Class = 'qfPlaneParallel';            % Set the geometry class
    prb.LengthUnits = 'qfCentimeters';        % Set length units
    prb.Coordinates = 'qfCartesian';          % Set coordinate system

    % Set geometry and physical data files the problem refers to
    prb.set ('ReferencedFile', 0, 'Magn1.mod');
    prb.set ('ReferencedFile', 1, 'Magn1.dms');

    prb.SaveAs ('Magn1.pbm');                 % Save the new problem

Here we use the ReferencedFile property in a way discussed below.

Step 4: Building a geometric model.

The BuildGeometry function is a bit lengthy but straightforward. It creates a new geometry model using the Add method of the
Model object.

Then several rectangular blocks are created by using the AddEdge method of the Shapes object. Creating each rectangle we
remember the edge group returned by any of AddEdge method in a shp variable. This variable, containing collection of edges built
during the corresponding AddEdge call, is used later to refer to the block, surrounding by the edge.

The entire code of the BuildGeometry function is here:

function BuildGeometry (modelFileName)
% Creates a geometry model
%
% Global data
% QuickField object
global QF; % the QuickField application
% Set of geometric dimensions
global yokeWidth;
global yokeHeight;
global maghetWidth;
global magnetHeight;
global keeperWidth;
global keeperHeight;
global airGap;

    mdl = QF.Models.Add ();            % Create an empty geometry model
    mdl.SaveAs (modelFileName);        % Save it immediately to establish link to the problem

% Create the yoke
    shp = mdl.Shapes.AddEdge (QF.PointXY(-yokeWidth / 2, 0), QF.PointXY(yokeWidth / 2, 0));
    mdl.Shapes.AddEdge (QF.PointXY (yokeWidth / 2, 0), QF.PointXY(yokeWidth / 2, yokeHeight));
    mdl.Shapes.AddEdge (QF.PointXY (yokeWidth / 2, yokeHeight), QF.PointXY(-yokeWidth / 2, yokeHeight));
    mdl.Shapes.AddEdge (QF.PointXY (-yokeWidth / 2, yokeHeight), QF.PointXY(-yokeWidth / 2, 0));
    shp.Left.Item (1).Label = 'Steel';

% Right Magnet
    shp = mdl.Shapes.AddEdge (QF.PointXY(yokeWidth / 2, yokeHeight), ...
        QF.PointXY(yokeWidth / 2, yokeHeight + magnetHeight));
    mdl.Shapes.AddEdge (QF.PointXY(yokeWidth / 2, yokeHeight + magnetHeight), ...
        QF.PointXY(yokeWidth / 2 - maghetWidth, yokeHeight + magnetHeight));
    mdl.Shapes.AddEdge (QF.PointXY (yokeWidth / 2 - maghetWidth, yokeHeight + magnetHeight), ...
        QF.PointXY(yokeWidth / 2 - maghetWidth, yokeHeight));
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    shp.Left.Item (1).Label = 'ALNICO down';

% Left Magnet
    shp = mdl.Shapes.AddEdge(QF.PointXY(-yokeWidth / 2, yokeHeight), ...
        QF.PointXY(-yokeWidth / 2, yokeHeight + magnetHeight));
    mdl.Shapes.AddEdge (QF.PointXY(-yokeWidth / 2, yokeHeight + magnetHeight), ...
        QF.PointXY(-yokeWidth / 2 + maghetWidth, yokeHeight + magnetHeight));
    mdl.Shapes.AddEdge (QF.PointXY(-yokeWidth / 2 + maghetWidth, yokeHeight + magnetHeight), ...
        QF.PointXY(-yokeWidth / 2 + maghetWidth, yokeHeight));
    shp.Right.Item (1).Label = 'ALNICO up';

% Steel Keeper
    yBase = yokeHeight + magnetHeight + airGap;
    shp = mdl.Shapes.AddEdge (QF.PointXY(-keeperWidth / 2, yBase), ...
        QF.PointXY(keeperWidth / 2, yBase));
    mdl.Shapes.AddEdge (QF.PointXY(keeperWidth / 2, yBase), ...
        QF.PointXY(keeperWidth / 2, yBase + keeperHeight));
    mdl.Shapes.AddEdge (QF.PointXY(keeperWidth / 2, yBase + keeperHeight), ...
        QF.PointXY(-keeperWidth / 2, yBase + keeperHeight));
    mdl.Shapes.AddEdge (QF.PointXY(-keeperWidth / 2, yBase + keeperHeight), ...
        QF.PointXY(-keeperWidth / 2, yBase));
    shp.Left.Item (1).Label = 'Steel Keeper';

% Surrounding air
    yBase = yokeHeight + magnetHeight + airGap + keeperHeight;
    xBase = (yokeWidth + keeperWidth) * 1.5;
    shp = mdl.Shapes.AddEdge (QF.PointXY(-xBase, -yBase), QF.PointXY(xBase, -yBase));
    mdl.Shapes.AddEdge (QF.PointXY(xBase, -yBase), QF.PointXY(xBase, 2 * yBase));
    mdl.Shapes.AddEdge (QF.PointXY(xBase, 2 * yBase), QF.PointXY(-xBase, 2 * yBase));
    mdl.Shapes.AddEdge (QF.PointXY(-xBase, 2 * yBase), QF.PointXY(-xBase, -yBase));
    shp.Left.Item (1).Label = 'Air';

    outerEdges = mdl.Shapes.get ('Boundary', 0);
for i = 1 : outerEdges.Count

        outerEdges.Item (i).Label = 'Zero';
end

% Set Spacing
    sp = min (magnetHeight, airGap) / 5;             % The spacing value
    mdl.Shapes.get ('LabeledAs', '', '', 'Steel Keeper').Spacing = sp;
    mdl.Shapes.get ('LabeledAs', '', '', 'Steel').Spacing = sp;
    mdl.Shapes.get ('LabeledAs', '', '', 'ALNICO up').Spacing = sp;
    mdl.Shapes.get ('LabeledAs', '', '', 'ALNICO down').Spacing = sp;
    mdl.Shapes.get ('LabeledAs', '', 'Zero', '').Spacing = sp * 4;

% Generate the mesh
    mdl.Shapes.BuildMesh ();

% Save the complete model
&    mdl.Save ();

Let us walk through the code step by step:

First we create a new empty model document and just save it. For saved document we use the filename that the problem refers to.
So, just after saving QuickField establishes the link between problem and model documents. The benefit of establishing the link early
is that the problem setting for coordinates and length unit will be applied to the model automatically.

function BuildGeometry (modelFileName)
    .........
    mdl = QF.Models.Add ();            % Create an empty geometry model
    mdl.SaveAs (modelFileName);        % Save it immediately to establish link to the problem

    ........

NNow we are ready to start building the edges constituting our model.

function BuildGeometry (modelFileName)

    ........
  % the Yoke

            ........

% Right Magnet

            ........

% Left Magnet

            ........

% Steel Keeper

            ........

        % Surrounding Air

            ........

        % Set Mesh Spacing

            ........

% Generate the Mesh br           

mdl.Shapes.BuildMesh ();

    % Save the complete model

mdl.Save



 ц

The comments % (in green) outlines our next work with several parts of model geometry. When finish with building the model we

will get the model picture to show it on the main screen (see discussion later) and save the model document again, this time by
simple Save method.

Now consider building of the steel yoke block. We use here the geometric dimension variables, declared at the global level and set
by user in the

% Create the yoke
    shp = mdl.Shapes.AddEdge (QF.PointXY(-yokeWidth / 2, 0), QF.PointXY(yokeWidth / 2, 0));
    mdl.Shapes.AddEdge (QF.PointXY (yokeWidth / 2, 0), QF.PointXY(yokeWidth / 2, yokeHeight));
    mdl.Shapes.AddEdge (QF.PointXY (yokeWidth / 2, yokeHeight), QF.PointXY(-yokeWidth / 2, yokeHeight));
    mdl.Shapes.AddEdge (QF.PointXY (-yokeWidth / 2, yokeHeight), QF.PointXY(-yokeWidth / 2, 0));
    shp.Left.Item (1).Label = 'Steel';

        ..........

There is the sequence of four AddEgde command builds a rectangular block. Please, note the way used to assign label to the block:
we remember an edge (generally speaking, group of edges) built by the first command in a shp variable. When the block is
completely built, we can refer to it as a block, located from the left side of the shp edge by the shp.Left property. The Label property
is used to assigning label to the block.

Please note the syntax we use for assigning the label to a block:

shp.Left.Item (1).Label = 'Steel';

In other languages, like Visual Basic we prefer to write something like

shp.Left.Label = "Steel"    ' works well in Visual Basic, but not in MATLAB

MATLAB does not allow using the Label property of a ShapeRange object for assigning the label to whole group of geometric
shapes. Instead, we have to assign the label to each geometric shape individually. Access to individual item in a collection is
provided by the Item method. We use Item (1) syntax if we know in advance that the collection contains only one element. If this is
not the case, write the loop:

    outerEdges = mdl.Shapes.get ('Boundary', 0);
    for i = 1 : outerEdges.Count
        outerEdges.Item (i).Label = 'Zero';

end

The fragment of code above refers to edges constitute the outer border of the area by Boundary property of the Shapes object. We
need to assign them a Zero label.

Our next step is to set the mesh spacing values to some vertices and that build the mesh. For simplicity sake we employ a

straightforward strategy: assign a small spacing value to all corners of the steel parts and a big spacing (four times bigger than
small one) to the outer corners.

% Set Spacing
    sp = min (magnetHeight, airGap) / 5;             % The spacing value
    mdl.Shapes.get ('LabeledAs', '', '', 'Steel Keeper').Spacing = sp;
    mdl.Shapes.get ('LabeledAs', '', '', 'Steel').Spacing = sp;
    mdl.Shapes.get ('LabeledAs', '', '', 'ALNICO up').Spacing = sp;
    mdl.Shapes.get ('LabeledAs', '', '', 'ALNICO down').Spacing = sp;
    mdl.Shapes.get ('LabeledAs', '', 'Zero', '').Spacing = sp * 4;

Another point worth to note at is using the LabeledAs property. MATLAB requires explicitly using all parameters, including optional
ones, so all all three string parameter of this property should be given. As usually with an indexed property, the get-syntax form

should be used.

When the mesh spacing is set, the mesh itself is generated by a single command: the BuildMesh method of the Shapes object.

    % Generate the mesh
    mdl.Shapes.BuildMesh ();

Step 5: Working with data labels.

Our current task is to set appropriate physical values to all the labels we have defined in the model. First have a look at the whole
procedure below, and then we discuss some important points.

function SetData (prb)
% Set the media properties, filed sources and boundary conditions
%
% Global data
% QuickField object
global QF; % the QuickField application
% Physical data
global Hc; % Coercive force of the magnet

% First set properties for block labels
    blockLabels = prb.get ('Labels', 3);
    for i = 1 : blockLabels.Count;
        lab = blockLabels.Item (i);
        cntBlock = lab.Content;
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switch lab.Name
case 'Air'

                cntBlock.set('Kxx', false, 1);
                cntBlock.set('Kyy', false, 1);

case {'Steel', 'Steel Keeper'}
                spl = cntBlock.CreateBHCurve ();
                spl.Add (QF.PointXY(0.73, 400));
                spl.Add (QF.PointXY(0.92, 600));
                spl.Add (QF.PointXY(1.05, 800));
                spl.Add (QF.PointXY(1.15, 1000));
                spl.Add (QF.PointXY(1.28, 1400));
                spl.Add (QF.PointXY(1.42, 2000));
                spl.Add (QF.PointXY(1.52, 3000));
                spl.Add (QF.PointXY(1.58, 4000));
                spl.Add (QF.PointXY(1.6, 6000));
                cntBlock.Spline = spl;

case {'ALNICO up', 'ALNICO down'}
                if strcmp(lab.Name, 'ALNICO up')
                    cntBlock.Coercive = QF.PointRA (Hc, pi / 2);
                else
                    cntBlock.Coercive = QF.PointRA(Hc, -pi / 2);
                end

                spl = cntBlock.CreateBHCurve;
                spl.Add (QF.PointXY(0.24, 27818 - Hc));
                spl.Add (QF.PointXY(0.4, 47748 - Hc));
                spl.Add (QF.PointXY(0.5, 67641 - Hc));
                spl.Add (QF.PointXY(0.6, 93504 - Hc));
                spl.Add (QF.PointXY(0.71, 127324 - Hc));
                spl.Add (QF.PointXY(0.77, 147218 - Hc));
                cntBlock.Spline = spl;

end % of switch

        lab.Content = cntBlock;
end % of the loop

% The only edge label
    cntEdge = prb.get ('Labels' , 2).Item ('Zero').Content;
    cntEdge.Dirichlet = 0;
    prb.get ('Labels' , 2).Item ('Zero').Content = cntEdge;

% Saving data document
    prb.DataDoc.Save;

To look through the block labels defining in the model we employ the for-end loop. There are several way to get the label collection:
from the Problem object or from the DataDoc object, represents the QuickField data document (as you remember, with a problem

can be associated up to two data documents). In our case, the data document is now empty, and the only way to get the collection
of labels is the Labels property of the Problem object. It is used with parameter of QfShapes type denoted which of three collection
we want to iterate. Note the MATLAB specific: we have to use numerical value 3 instead of named constant 'QfShapes' as a 
parameter of indexed property.

All operations with the content of an individual label we do with an object, accessible by the Content property of the Label object.
Exact type of that object depends upon problem and label types as described in the DataDoc topic. When finished with the Content,
we must put it back to the parent Label by assigning it to the Label's Content property.

        lab = blockLabels.Item (i);
        cntBlock = lab.Content;
        ...................
        lab.Content = cntBlock;

Now lets consider parameters setting for each individual label. The most simple looks the code for linear media, like "Air" label:

    case 'Air'
        cntBlock.set('Kxx', false, 1);
        cntBlock.set('Kyy', false, 1);

Here we have to assign the relative magnetic permeability value 1 to both components of the permeability tensor. The boolean

parameter of the Kxx and Kyy property defines whether the permeability value is absolute (true) or relative (false). In MATLAB this
optional parameter cannot be omitted.

Working with a label describing the saturated media, we have to create and define a Spline object.

case {'Steel', 'Steel Keeper'}
                spl = cntBlock.CreateBHCurve ();
                spl.Add (QF.PointXY(0.73, 400));
                spl.Add (QF.PointXY(0.92, 600));
                spl.Add (QF.PointXY(1.05, 800));
                spl.Add (QF.PointXY(1.15, 1000));
                spl.Add (QF.PointXY(1.28, 1400));
                spl.Add (QF.PointXY(1.42, 2000));
                spl.Add (QF.PointXY(1.52, 3000));
                spl.Add (QF.PointXY(1.58, 4000));
                spl.Add (QF.PointXY(1.6, 6000));
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                cntBlock.Spline = spl;

The label is empty now, so we have to first create a new spline by the CreateBHCurve method. Then we add each spline node
individually by the Add method and finally assign the spline to the label's content.

With a non-linear permanent magnet we should also set the coercive force value. On the code fragment below we first set the
coercive force value and then add the spline nodes. In this case we must subtract the coercive force from the magnetic field value to
put the curve into the second quadrant.

case {'ALNICO up', 'ALNICO down'}
                if strcmp(lab.Name, 'ALNICO up')
                    cntBlock.Coercive = QF.PointRA (Hc, pi / 2);
                else
                    cntBlock.Coercive = QF.PointRA(Hc, -pi / 2);
                end

                spl = cntBlock.CreateBHCurve;
                spl.Add (QF.PointXY(0.24, 27818 - Hc));
                spl.Add (QF.PointXY(0.4, 47748 - Hc));
                spl.Add (QF.PointXY(0.5, 67641 - Hc));
                spl.Add (QF.PointXY(0.6, 93504 - Hc));
                spl.Add (QF.PointXY(0.71, 127324 - Hc));
                spl.Add (QF.PointXY(0.77, 147218 - Hc));
                cntBlock.Spline = spl;

It is possible first to define the curve, located in the first quadrant, and then set the coercive force.

With edge label we do not need to look through the edge labels collection because we have only one edge label. The following code

puts zero Dirichlet condition to the "Zero" label:

% The only edge label
    cntEdge = prb.get ('Labels' , 2).Item ('Zero').Content;
    cntEdge.Dirichlet = 0;
    prb.get ('Labels' , 2).Item ('Zero').Content = cntEdge;

% Saving data document
    prb.DataDoc.Save;

The Dirichlet property set and returns Dirichlet boundary condition that do not depends upon coordinates.

The last line of the SetData procedure saves the modified data document. It has its file name assigned when the problem was
created, so we only need a Save method.

Step 6: Analyzing the solution

When the model and data are ready, we are able to solve a problem and start to analyze result:

function Solve (prb)
% Solves the problem
%
% Global data
global QF;         % the QuickField application

if prb.CanSolve
        prb.SolveProblem;

end

The AnalyzeResults method loads the solution for analyzing and creates the first FieldWindow object, represents a field picture

window. After that we can get the Result object, which gives access to analyzing capabilities.

In our program we have to do two tasks with the problem solution: adjust the field picture and calculate the force acting to the steel

keeper. To get more informative field picture we employ the Zoom method of the FieldPicture object, receiving two parameters of
the Point type.

function ViewResults (prb)
% Solves the problem and starts the postprocessor
%
% Global data
% QuickField object
global QF;     % the QuickField application
% Set of geometric dimensions
global yokeWidth;
global yokeHeight;
global maghetWidth;
global magnetHeight;
global keeperWidth;
global keeperHeight;
global airGap;

if prb.Solved
        prb.AnalyzeResults;

end

    res = prb.Result;
if ~isinterface (res)

        disp ('error: Cannot get problem result');
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return;
end

    fieldWin = res.GetFieldWindow (1);
    fieldWin.WindowState = 'qfNormal';
    fieldWin.Height = fieldWin.Width + 10;

    bottomLeft = QF.PointXY (-yokeWidth / 2 - maghetWidth, -magnetHeight);
    topRight = QF.PointXY (yokeWidth / 2 + maghetWidth, ...
        yokeHeight + magnetHeight + airGap + keeperHeight + magnetHeight);
    fieldWin.Zoom (bottomLeft, topRight);

To calculate the mechanical force we have to create a contour surrounding the keeper's body. Each FieldWindow object always
possesses only one the Contour, even an empty one. We get the Contour object from our FieldWindow object called fieldWin and
use its AddLineTo method to add lines to the contour. The last AddLineTo connects the last contour point with its starting point.

When the closed contour oriented counter clockwise is ready, we can use the GetIntegral method of the Result object to calculate
desired integral value. The force value is really a vector quantities, so being interested only in its absolute value we use its Abs

property.

function force = CalculateForce (prb)
% Solves the problem and starts the postprocessor
%
% Global data
% QuickField object
global QF;     % the QuickField application
% Set of geometric dimensions
global yokeWidth;
global yokeHeight;
global maghetWidth;
global magnetHeight;
global keeperWidth;
global keeperHeight;
global airGap;

    force = 0;
    res = prb.Result;

if ~isinterface (res)
return;

end

    fieldWin = res.GetFieldWindow (1);
    cont = fieldWin.Contour;

    cont.AddLineTo (QF.PointXY (-keeperWidth / 2 - maghetWidth, ...
        yokeHeight + magnetHeight + airGap / 2));
    cont.AddLineTo (QF.PointXY (keeperWidth / 2 + maghetWidth, ...
        yokeHeight + magnetHeight + airGap / 2));
    cont.AddLineTo (QF.PointXY (keeperWidth / 2 + maghetWidth, ...
        yokeHeight + magnetHeight + airGap + keeperHeight * 1.5));
    cont.AddLineTo (QF.PointXY (-keeperWidth / 2 - maghetWidth, ...
        yokeHeight + magnetHeight + airGap + keeperHeight * 1.5));
    cont.AddLineTo (QF.PointXY (-keeperWidth / 2 - maghetWidth, ...
        yokeHeight + magnetHeight + airGap / 2));

    force = res.GetIntegral('qfInt_MaxwellForce', cont).Abs;

% final cleanup
    cont.Delete (true);
    cont.release;
    fieldWin.release;

What's More

This very simple application can be considered as an prototype for more developed custom project intended to automate analyzing of

some parameterized model. To do it more realistic we obviously have to develop some code for validation user's input. Probably it
will be useful to allow the customer to build his or her model from some parameterized "building blocks", implement some methods
for optimization an much more.


