

Design of a capacitance sensor for void fraction measurement using QuickField

Tobias Gschnaidtner

t.gschnaidtner@hotmail.com

Motivation: Sensor for measuring twophase flows

Optimization

Capacitance sensor

(Void fraction measurement of gas-liquid two-phase flow)

$$\alpha = \frac{V_{g}}{V}$$

Agenda

- 1 Problem description
- 2 Model description
- 3 Method
- 4 Numerical results
- 5 Experimental setup
- 6 Comparison of results
- 7 Conclusion

Ring-type capacitance sensor

Assumptions in order to simplify problem description

- Neglecting the effect of fringing field
- Constant relative permittivities
- No free charge in the domain
- Electrostatic approach
- Axis-symmetric geometry

Laplace's equation:

$$\boxed{\frac{1}{r} \cdot \frac{\partial}{\partial r} \cdot \left(\varepsilon_r(r,z) \cdot r \cdot \frac{\partial \phi(r,z)}{\partial r} \right) + \frac{\partial}{\partial z} \cdot \left(\varepsilon_r(r,z) \cdot \frac{\partial \phi(r,z)}{\partial z} \right) = 0}$$

Numerical model: optimization of sensor in terms of sensitivity

Numerical model: sensor output depending on flow pattern

- a) Bubbly flow: Maxwell model
- b) Slug flow

Combination of

- c) Churn flow
- a) and d)
- d) Annular flow: gas core model

Numerical model: Annular flow

B.C.:

$$\left. \left. \mathcal{E}_{l} \cdot \frac{\partial \phi(r,z)}{\partial z} \right|_{r=r_{c}} = \left. \mathcal{E}_{g} \cdot \frac{\partial \phi(r,z)}{\partial z} \right|_{r=r_{c}} \quad (\partial \Omega_{g-l})$$

Numerical model: Bubbly flow

$$\boxed{\alpha\left(\frac{r}{R}\right) = \left\langle\alpha\right\rangle \cdot \frac{n+2}{n} \cdot \left[1 - \left(\frac{r}{R}\right)^{n}\right]}$$

$$\boxed{\alpha\left(\frac{r}{R}\right) = \langle \alpha \rangle \cdot \frac{n+2}{n} \cdot \left[1 - \left(\frac{r}{R}\right)^{n}\right]} \quad \varepsilon_{m}\left(\frac{r}{R}\right) = \varepsilon_{l} \cdot \frac{1 + 2 \cdot \alpha\left(\frac{r}{R}\right) \cdot \frac{\varepsilon_{g} - \varepsilon_{l}}{\varepsilon_{g} + 2 \cdot \varepsilon_{l}}}{1 - \alpha\left(\frac{r}{R}\right) \cdot \frac{\varepsilon_{g} - \varepsilon_{l}}{\varepsilon_{g} + 2 \cdot \varepsilon_{l}}}$$

Method: MATLAB as Automation Client

QuickField

MATLAB

MATLAB

QuickField

MATLAB

Basic configurations

(Problem type, model class, geometric model,...)

Setting start parameters

(Physical and geometric properties)

Serial analysis

(Physical and geometric properties)

Solving problems

(Simulation of cases and solution)

Evaluation of data

(Calculation of capacitance, graphs,...)

Numerical results: Optimization

Design parameters:

$$\frac{w}{d} = 0.42 \quad \frac{s}{d} \le 0.08$$

Numerical results: Calibration curve for distilled water

Experimental setup: sensor and test rig

- Ring-type capacitance sensor with shielding
- Boonton 72 BD capacitance meter
- Dynamic experiments based on air-distilled water twophase flow
- Quick-closing valves as calibration standard

Comparison of experimental and numerical results

$$V^* = \frac{V - V_g}{V_l - V_g}$$

- Numerical model follows the trend of the experimental results.
- Linear void profile yields most accurate results for bubbly flow.
- Overall RMSE of numerical model is 0.033.
- Maximum deviation of numerical model is 0.08.

Conclusions

- QuickField was used to optimize and calibrate a capacitance void fraction sensor.
- Simple and fast serial analysis using QuickField along with MATLAB.
- The numerical results agree well with experimental data of air-distilled water towphase flow.
- Applicability of models to other fluids and geometric configurations of the sensor?

References

For detailed information and further literature I would like to refer to my thesis, which will be published soon:

Development and construction of a System for the Measurement of the Void Fraction and Frictional Pressure Drop in a Two-Phase Closed Loop Thermosyphon