Physical laws simulation in QuickField

Vladimir Podnos Director of marketing and support

Overview of QuickField capabilities

Alexander Liubimtsev

Support engineer Live presentation of QuickField simulations

QuickField is FEA for EM, heat transfer, stress and

QuickField Analysis Options

Magnetic analysis suite			
Magnetic Problems	Magnetostatics		
	AC Magnetics		
	Transient Magnetic		
Electric analysis suite			
Electric Problems	Electrostatics (2D,3D) and DC Conduction (2D,3D)		
	AC Conduction		
	Transient Electric field		
Thermostructural analysis suite			
Thermal and mechanical problems	Steady-State Heat transfer (2D,3D)		
	Transient Heat transfer		
	Stress analysis		

QuickField solvers

Solution time for various sizes of finite element mesh

For experts: open object interface

More for experts....

Serial calculations Tolerance Analysis Optimization

🔒 1.mod

Tel

🚑 1_9.mod

Ouick Field workshop in Ann Arbor, October 31 2011

- 🗆 ×

Simple and straightforward

QuickField is used in

- Industrial engineering
- Scientific research
- Education

QuickField as a teaching tool for teachers:

QuickField enables teachers to:

- explain the physical nature of studied effects and processes and demonstrate the principles of operating industrial devices
- develop "practical engineering sense" in their students by showing them how to visualize field equations and formulae they have studied
- produce pictures and animated presentations of fields in various conditions
- prepare students assignments in the form of example models or as design concepts to be simulated with

QuickField as a teaching tool for students:

QuickField enables students to:

- improve their understanding of assignments prepared by teachers studying various effects and processes
- implement student research projects
- gain a fundamental understanding of modern CAD/CAE technologies through entry level FEA analysis
- gain experience of utilizing a real engineering tool which may be used in their professional career

Where to start from:

An effortless way to introduce QuickField to students of any level is via our <u>Virtual Classroom</u>. Students can work through a set of tutorials on-line in the browser window or tutors can download and present to their class without the internet connection .

QuickField Student Edition may be installed on any number of student computers and used for simple simulations or as a free browser of results obtained with the <u>Professional or</u> <u>Lite Editions</u> of QuickField.

What to do next:

QuickField examples.

This webinar presentations:

- Ampere's force law
- Biot-Savart law
- Hook's law
- Coulomb's law
- Joule-Lenz law
- Ohm's law
- Faraday's law of electromagnetic induction
- Fick's laws of diffusion
- Thermal conduction Fourier's law

Where to go next:

Additional examples: Examples gallery

Filter (show the examples with Analysis type DC magnetics AC magnetics Transient magnetics Electrostatics DC conduction AC conduction	ecified features only). <u>Re</u> Model class Plane-parallel Axisymmetric 3D Extrusion 3D Import	Application Electrical engineering Mechanical engineering Bio engineering Thermal engineering Other	
 Transient electric Steady-state Heat Transfer Transient Heat Transfer Stress Analysis Multiphysics Electric circuit 	 for Student Edition with programming with LabelMover 		

Pages: $\leq 1 \quad \underline{2} \quad \underline{3} \quad \underline{4} \quad \underline{5} \quad \dots \quad \underline{50} \geq \geq$

Three phase cable

QuickField Support team

Model class: Plane-parallel Analysis type: AC conduction Application: electrical engineering

High frequency (400 Hz) three phase cable leakage current calculation

Where to go next:

The book <u>Applied Electromagnetics Using QuickField & MATLAB</u> includes demonstrations and simulations of various physical phenomena using QuickField.

https://www.amazon.com/Applied-Electromagnetics-Using-Quick-Matlab/dp/9380298161

Physical laws simulation in QuickField

- Ampere's force law
- Biot-Savart law
- Hooke's law
- Coulomb's law
- Joule-Lenz law
- Ohm's law
- Faraday's law of electromagnetic induction
- Fick's laws of diffusion
- Thermal conduction Fourier's law

Ampere's force law

Task:

Calculate interaction force (per meter of length) between two wires

Amprere's law $F = \frac{2\mu_0}{4\pi} \frac{|I| \cdot |I|}{r^2}$

 $F = 2 \cdot 10^{-7} N/m$

https://quickfield.com/advanced/ampere_force_law.htm

Biot-Savart law

https://quickfield.com/advanced/biot-savart_law.htm

Task:

Calculate the charged bodies attraction force Q+ = |Q-| = 0.1 nC

https://quickfield.com/advanced/coulombs_law.htm

Coulomb's law $F = \frac{1}{4\pi\varepsilon_0} \frac{|Q| \cdot |Q|}{r^2}$

F = 2.247 nN

https://quickfield.com/advanced/joule-lenz_law.htm

Hooke's law

Young's modulus E = 70 GPa; Poison's ratio v = 1/3

Task:

Calculate the bar elongation.

Hooke's law $\Delta L = \frac{F \cdot L}{E \cdot Area}$

$$\Delta L = \frac{85000 \cdot 3}{70 \cdot 10^9 \cdot 0.000707} = 0,0052 \text{ m}$$

Ohm's law

Task:

Find the voltage drops across the circuit elements *L*, *R*

Ohm's law $V = I \cdot R$

Frequency 0 Hz:

Voltages: $V_{\rm R} = 20 [V], V_{\rm L} = 0$ Frequency f = 50 Hz:

Voltages: $V_{\rm R} = 20 \, [V], V_{\rm L} = 2^* \pi^* f^* L^* I = 6.28 \, [V]$

Faraday's law of induction

Permanent magnet

Task:

Faraday's law $E = -N \frac{d\Phi}{dt} [V]$ Calculate induced voltage in the coil. Coil number of turns N = 200PM speed V = 10 cm/sec PM relative permeability 1.05

Thermal conduction Fourier's law

Task: Determine the heat flux passing through the flat wall PVC $d = 1 \text{ cm}, S = 10 \times 10 \text{ cm}^2,$ $\lambda = 0.4 \text{ W/K-m}$ T2 = +60 CT1 = +20 $\phi = \lambda * \frac{T2 - T1}{d} * S \quad [W]$ d $\Phi = 0.4^{*}(60-20)/0.01^{*}100^{*}10^{-6} = 16 \text{ W}$

https://quickfield.com/advanced/fourier_law.htm

Fick's laws of diffusion

Thermal diffusion $a = \frac{\lambda}{c\rho}$ [m²/sec]

https://quickfield.com/advanced/ficks_law.htm

Task:

Estimate water penetration into the concrete wall after 5 days exposure. Initial water conent $C_0 = 10\%$ Diffusion coefficient $D = 0.0001 \text{ cm}^2/\text{sec}$

Diffusion equation $dC/dt = D \cdot d^2C / dx^2$

Heat equation $dT/dt = a \cdot d^2T / dx^2$