Coupl2: Cylinder subject to temperature and pressure

A very long, thick-walled cylinder is subjected to an internal pressure and a steady state temperature distribution with Ti and T0 temperatures at inner and outer surfaces respectively. Calculate the stress distribution in the cylinder.

Problem Type:
An axisymmetric problem of thermal-structural coupling.

Geometry:
Stress distribution in a long solenoid Calculate the magnetic flux density and stress distribution in a solenoid R1 R2 To = 0 °C Ti = 100 °C Pipe

Given:
Dimensions Ri = 1 cm, Ro = 2 cm;
Inner surface temperature Ti = 100°C;
Outer surface temperature To = 0°C;
Coefficient of thermal expansion α = 1·10-6 1/K;
Internal pressure P = 1·106 N/m2;
Young's modulus E = 3·1011 N/m2;
Poisson's ratio ν = 0.3.

Problem:
Calculate the stress distribution.

Solution:
Since none of physical quantities varies along z-axis, a thin slice of the cylinder can be modeled. The axial length of the model is arbitrarily chosen to be 0.2 cm. Axial displacement is set equal to zero at the side edges of the model to reflect the infinite length of the cylinder.

Comparison of Results:
Radial and circumferential stress at r = 1.2875 cm:

  σr (N/m2) σθ (N/m2)
Theory –3.9834·106 –5.9247·106
QuickField –3.959·106 –5.924·106

Reference:
S. P. Timoshenko and Goodier, "Theory of Elasticity", McGraw-Hill Book Co., N.Y., 1961, pp. 448-449.

See the Coupl2HT.pbm and Coupl2SA.pbm problems in the Examples folder for the corresponding heat transfer and structural parts of this problem.