Biophysical Simulations using QuickField

James R. Claycomb Department of Mathematics and Physics, Houston Baptist University

Biophysical Simulations using QuickField

- Membrane and Cellular Size Scales
- Intrinsic Membrane Potentials
- Membrane Bound Charges
- Induced Membrane Potentials
 External Plasma Membrane
 Organelle Membranes
- Bioimpedance Simulations
- Dielectrophoresis Forces

Relative Size Scales

- Cells are ~50 micron size
- Membranes are ~ 7 nm in thickness
- Mesh density should span ~ 3 orders of magnitude

Scale modeling of biological membranes requires a hyperfine mesh density

Membrane Potential

Membrane with ionic concentrations C^1 and C^2 on each side of the membrane.

Membrane Charges

Section of plasma membrane with embedded membrane proteins. Cell membranes represent a boundary between living and nonliving matter on earth. The membrane encloses the cytoplasm containing organelles while remaining permeable to small molecules.

Modulation of membrane potential by external fields

- Motion of counter ions (α –frequency range below kHz)
- Maxwell-Wagner effect potential differences developed across regions of differing permittivity

Amplification of E across the membrane

Bioimpedance Simulations

- Determine the effective $\sigma \, {\rm and} \, \varepsilon \, {\rm of} \, {\rm tissue} \, {\rm or} \, {\rm cell}$ suspension

Modeled using the AC Current Flow Module

Mitochondrion

Dielectrophoresis Force

- Occurs in nonuniform fields, $\mathbf{F} = \mathbf{p} \cdot \nabla \cdot \mathbf{E}$
- Direction of the force points towards or away from electric field gradient direction
- Direction depends on the relative permittivity of dielectric particles with respect to the medium
- Application to cell separation
- AC Fields

$$F = 2\pi r^{3} \varepsilon_{m} \operatorname{Re}\left(\frac{\varepsilon_{p}^{*} - \varepsilon_{m}^{*}}{\varepsilon_{p}^{*} + 2\varepsilon_{m}^{*}}\right) \nabla E_{\mathrm{rms}}^{2}$$

Key Points

- Low frequency fields are screened from the interior of cells
- High frequency fields penetrate cells modulating the organelle potential differences
- External fields are amplified across cell membranes
- Dielectrophoresis force occurs in nonuniform fields and is either attractive or repulsive depending on the relative permeability of dielectric particles relative to their environment.

Books by Dr. James Claycomb:

APPLIED ELECTROMAGNETICS Using QuickField[®] and MATLAB[®]

James R. Claycomb

JAMES CLAYCOMB • JONATHAN TRAN

Further Applications: Introductory Biophysics by Jones & Bartlett Learning

JAMES CLAYCOMB • JONATHAN TRAN

Analysis & Symmetry	Biophysical Calculations in QuickField
Electrostatic •X-Y Symmetry •Axial Symmetry	 Field distributions of molecular ion and dipole sources Plasma and organelle membrane potentials and field distributions Forces and torques on membrane bound protein dipole sources Dielectrophoretic force acting on cells and biomolecules in nonuniform electric fields Electrorotation forces on cells of various shapes.
Magnetostatic •X-Y Symmetry •Axial Symmetry	 Magnetic fields generated by bioelectric currents Magnetotactic bacteria Current dipole model of action potentials Forces and torques acting between bioelectric current sources Forces and torques acting on bioelectric sources in external B fields Magnetostatic forces acting on weakly diamagnetic biomaterials in high magnetic fields
AC Magnetic •X-Y Symmetry •Axial Symmetry	 AC currents induced in tissue and cells by alternating magnetic fields Joule heating of tissue by alternating magnetic fields AC currents and induced potentials across plasma and organelle membranes
Transient Magnetic •X-Y Symmetry •Axial Symmetry	 Transient currents induced in biomaterials by magnetic field pulses and periodic waveforms (including square wave, triangle, saw tooth, rectified sine wave, delta train) Transient currents and induced potentials across plasma and organelle membranes

Further Applications: Introductory Biophysics by Jones & Bartlett Learning

JAMES CLAYCOMB • JONATHAN TRAN

DC Conduction •X-Y Symmetry •Axial Symmetry	 DC current flow through biomaterials Bioelectric return currents due to action potentials DC currents through gap junctions, plasma and organelle membranes
AC Conduction •X-Y Symmetry •Axial Symmetry	 Bioimpedance calculations of tissue and cells AC currents induced in tissue and cells by alternating magnetic fields
Thermal •X-Y Symmetry •Axial Symmetry	• Heat transfer between biomaterials via radiation, convection and conduction
Stress •X-Y Symmetry •Axial Symmetry	 Stresses and strains in biomaterials with specified Young's modulus and Poisson's ratio Coupled electric stresses in biomaterials Coupled thermal stresses in biomaterials
Circuit Analysis (AC Magnetics and Transient Magnetics)	 Equivalent circuit models of cells and tissue under electrical stimulation Dendrite passive signal propagation Gap junction circuit models Circuit models of electrode interfaces Electrical circuits linked to tissue elements constructed in AC and Transient Magnetics Modules