

AC Magnetic simulation with QuickField

Vladimir Podnos

Director of Marketing and Support Tera Analysis Ltd.

Alexander Lyubimtsev

Support Engineer Tera Analysis Ltd.

QuickField Analysis Options

• · · • •	Magnetostatics	
Magnetic analysis	AC Magnetics	
Suite	Transient Magnetic	
	Electrostatics (2D,3D) and DC Conduction (2D,3D)	
Electric analysis suite	AC Conduction	
	Transient Electric field	
	Steady-State Heat transfer (2D,3D)	
I hermostructural analysis suite	Transient Heat transfer	
	Stress analysis	

MultiPhysics (2D)

Stresses & Deformations

QuickField AC Magnetics

	Magnetostatics	
Magnetic analysis	AC Magnetics	
5010	Transient Magnetic	
	Electrostatics (2D,3D) and DC Conduction (2D,3D)	
Electric analysis suite	AC Conduction	
	Transient Electric field	
	Steady-State Heat transfer (2D,3D)	
I hermostructural	Transient Heat transfer	
unarysis suite	Stress analysis	

QuickField Workflow

Model editor

Material physical properties, field sources and boundary conditions

Results analysis

QuickField AC Magnetics. Problem setup

QuickField AC Magnetics. Label properties

Edge

Block

	Lore Loss		
°erme ⊥ _⊻ = ⊥y = □ <u>N</u>	ability 1 onlinear	 Relative Absolute Anisotropic 	Coordinates <u>C</u> artesian <u>P</u> olar
Electr	ical Conductivity		
σ=	58005000	(S/m) Depend	ds on Temperature
		Temperature: 0	(°C)
Field S	Source		
<u>I</u> _o =	1		(A)
φ=	0		(deg) f
	irce Mode	Conductor's	Connection

. (n	agnetic <u>P</u> otential: A = A _o	
eo =	0	(Wb/m)
)=	0	(deg)
	5	
<u>z</u> e	ero Normal Flux: B _n = 0	
Ē	ven Periodic: A ₁ = A ₂	
_		

Vertex

	lagnetic <u>P</u> otential: A = A _o	
<u>≜</u> ₀=	= 0	(Wb/m)
$\phi =$	0	(deg)
<mark></mark> = φ=	inear <u>C</u> urrent 25	(A) (deg)

https://quickfield.com/acmag.htm

QuickField AC Magnetics. Circuit

AC magnetic problems in QuickField may be defined with the **electric circuits** connected to blocks of the field model. These formulations are suitable to model electromagnetic devices, like motors with complex winding scheme, or transformers with combined load.

Features

- Passive elements (R,L,C) and sources (U,I)
- Loads: constant, sinusoidal and complex pulse shape sources (you can use formulas to describe the electric source parameters)
- Results: voltage, current and impedance for each element. Current and voltage time plot.

QuickField AC Magnetics. Results

Results analysis is the most complicated part, having more options. Generally the following types of result analysis are available:

QuickField AC Magnetics. Results

Field maps

Local field data

Integrals

QuickField API

https://quickfield.com/programming.htm

QuickField Difference

AC Magnetic simulation with QuickField

https://quickfield.com/seminar/seminar_ac_magn.htm

Slot embedded conductor skin effect

8.95 mm Air LC, 4 6 **M M** Steel 52 00 Copper bar 00 18.85 mm

All dimensions are in millimeters

Problem specification:

Conductivity of copper σ = 58 MS/m Current in the conductor *I* = 1 A Frequency *f* = 45 Hz

<u>Task:</u>

Determine current distribution within the conductor and complex impedance of the conductor.

* Reference: A. Konrad, <u>Integrodifferential Finite Element</u> <u>Formulation of Two-Dimensional</u> <u>Steady-State Skin Effect Problems</u>, IEEE Trans. Magnetics, Vol MAG-18, # 1, January 1982.

https://quickfield.com/advanced/hmagn1.htm

Slot embedded conductor skin effect

-|Z| Voltage V = 0.00050275 V

	External current density, A/m ²
QuickField	10183 + j27326
Reference*	10182.7 + j27327.9

* Reference: A. Konrad, <u>Integrodifferential</u> <u>Finite Element Formulation of</u> <u>Two-Dimensional Steady-State Skin Effect</u> <u>Problems</u>, IEEE Trans. Magnetics, Vol MAG-18, # 1, January 1982.

alu	es
[Ż	Impedance Wizard
-	Z Impedance: Z = 0.00050275 (Ω)
	<mark>-</mark> Resistance: R = 0.00017555 (Ω)
	Reactance: Χ _L = 0.0004711 (Ω)
	 Inductance: L = 1.6662e-6 (H)

https://quickfield.com/advanced/hmagn1.htm

Three-phase busbar losses

Problem specification:

Conductivity of aluminum σ = 37 MS/m AC current *I* = 1000 A (R.M.S. value) Frequency *f*: 50 Hz, 400 Hz, 1 kHz, 3 kHz

<u>Task:</u>

Calculate the dependence of the busbar losses on the alternating current frequency.

Three-phase busbar losses

https://quickfield.com/advanced/busbars_ac_resistance.htm

Electromagnetic shielding

Problem specification:

Electrical conductivity of steel 10 MS/m Relative magnetic permeability of steel μ =1000 External magnetic field flux density *B* = 0.139 T Frequency *f* = 50 Hz

<u>Task:</u>

Find the level of magnetic field reduction inside the shield

Gap 0.. 2mm

https://quickfield.com/advanced/toe_lab4.htm

Electromagnetic shielding

Shield type	Peak value of flux density in the center, mT
Steel cylinder with slot 1 mm	30
Steel cylinder with slot 2 mm	40

https://quickfield.com/advanced/toe_lab4.htm

Transmission line magnetic coupling

Problem specification:

Left line current: 200 A (r.m.s) Frequency f = 50 Hz Ground electrical conductivity $\sigma = 0.1$ S/m Transmission line length $L_z = 10$ km Victim line grounding resistance R = 4 Ohm

Ground

<u>Task:</u>

Find the electromagnetically induced voltages in the right (victim) transmission line at the ungrounded end of the 10 km segment.

https://quickfield.com/advanced/transmission_line_magnetic_coupling.htm

Transmission line magnetic coupling

https://quickfield.com/advanced/transmission_line_magnetic_coupling.htm

Linear electric motor

Problem specification:

Core permeability μ = 1000; Rail conductivity σ = 37 MS/m; Frequency *f* = 50 Hz. Slot total current I = 1844 A (r.m.s)

<u>Task:</u>

Calculate propulsion force acting on the rail and Joule heat loss.

Linear electric motor

https://quickfield.com/advanced/perio2.htm

Conductivity of copper $\sigma_1 = 46.8$ MS/m; Conductivity of aluminum $\sigma_2 = 31.1$ MS/m;

<u>Task:</u>

Calculate torque, current, Joule heat losses in the rotor at various rotation speeds

Rotation velocity	Rotor currents	Bar conductivity in the model
0 - stall		σ ₂
Slip: 0< <i>n</i> <n<sub>0</n<sub>		$\sigma_2^* (1 - n / n_0)$
Synchronous	0	0

https://quickfield.com/advanced/induction motor.htm

Induction motor

This recording is over

More recordings and simulation examples at <u>www.quickfield.com</u>

Your feedback is welcome: support@quickfield.com