

Alternating field simulation with QuickField

Vladimir Podnos

Director of Marketing and Support Tera Analysis Ltd.

Alexander Lyubimtsev

Support Engineer Tera Analysis Ltd.

https://quickfield.com/seminar/seminar_alternating.htm

QuickField Analysis Options

	Magnetostatics	
Magnetic analysis suite	AC Magnetics	
	Transient Magnetic	
Electric analysis suite	Electrostatics (2D,3D) and DC Conduction (2D,3D)	
	AC Conduction	
	Transient Electric field	
Thermostructural analysis suite	Steady-State Heat transfer (2D,3D)	
	Transient Heat transfer	
	Stress analysis	

MultiPhysics (2D)

Stresses & Deformations

https://quickfield.com/coupling.htm

QuickField Analysis Options

Magnetic analysis suite	Magnetostatics	
	AC Magnetics	
	Transient Magnetic	
Electric analysis suite	Electrostatics (2D,3D) and DC Conduction (2D,3D)	
	AC Conduction	
	Transient Electric field	
Thermostructural analysis suite	Steady-State Heat transfer (2D,3D)	
	Transient Heat transfer	
	Stress analysis	

Field components and electric currents are considered to be time-harmonic, vary with time as $z = z_0 \cdot \cos(\omega t + \varphi_z)$, and presented as complex values with real and imaginary parts.

⊨ √-1 Complex Values

Field sources and boundary conditions can be defined by time-dependent formulae (including time-harmonic), and the transient solution is obtained by time integration using time steps.

AC analysis:

Pros:

• Fast, because does not require time integration.

Cons:

 Does not allow analyzing non-linear effects

Transient analysis:

Pros:

No limitations for non-linear material properties

Cons:

• Numerical integration in time domain requires solving of many problems for individual time steps.

Problem Properties - Motor_c.pbm			
General Links			
Problem Type	AC Magnetics	Length Units Millimeters ~	
- Model Class -	Frequency	Coordinate System	
Specify	f = 50 Hz	Polar ~	
frequency	value	Precision	
$L_{2} = 50$	mm	High 🗸	
Files			
Geometry:	Acmotor_c.mod		
Data:	Data: Motor_c.dhe		
Library Data:			
Circuit:	motor_c.qcr		

roblem Properties - motor.pbm	time step and final
General Links Timing	time
	Length <u>U</u> nits
Problem Type: Transient Magnetics	✓ Meters ✓
Model Class	Coordinate <u>S</u> ystem
Plane-parallel \sim	Cartesian 🗸 🗸
	Precision
$L_2 = 1$ m	Normal 🗸
Files	
<u>G</u> eometry: motor.mod	
Data: motor.dms	
Library Data:	
Circuit:	

Block Lab	el Prop	erties - Coppe	er Bar			×
General	Core Lo	088				
μ ₂ = μ ₃ = [] <u>N</u>	a Dility 1 onlinear		0	R <u>e</u> lative A <u>b</u> solute Anisotropic	Coordinates <u>C</u> artesian <u>P</u> olar	
Electr σ=	ical Con 58005	ductivity	(S/m)	Depend	ls on Temperature	
- Field S	Source	Specif magni	y ph tude	asor and pl	hase	
<u>Ι</u> _o = φ=	1 0				(A) (deg) f	
Sou	ırce Mod ⊻oltage <u>T</u> otal Cu	le irrent		Conductor's I O In Para <u>l</u> le O In <u>S</u> eries	Connection I	

Block Label Properties - copper				
General				
Permeability	Coordinates			
μ ₂ = 1	• R <u>e</u> lative • Cartesian			
μ _y = 1	○ A <u>b</u> solute ○ <u>P</u> olar			
<u>N</u> onlinear	Anisotropic			
Coercive Force of Magnet				
<u>M</u> agnitude: 0	(A/m)			
Direction: 0	(deg)			
Conductivity (for transient an	nalysis only)			
$\sigma = 56e6$ (S/m)	Depends on Temperature			
	Temperature: 0 (°C)		
Field Source Specify formula of time				
I ₀ = 1 * sin (360* 50 * t + 0)) (A) f			
<u>◯ V</u> oltage	Conductor's Connection			
I otal Current	In <u>Parallel</u>			
	◯ In <u>S</u> eries			

Transient

QuickField API

https://quickfield.com/programming.htm

QuickField Difference

Alternating field simulation with QuickField

https://quickfield.com/seminar/seminar_alternating.htm

Periodic thermal transmittance

200 mm

inside,

outside,

Coil with ferromagnetic core

<u>Task:</u>

Determine current in the winding

https://quickfield.com/advanced/hmagn4.htm https://quickfield.com/advanced/tecircuit1.htm

Problem specification:

Number of turns w = 120AC voltage value U = 13.33 V Frequency f = 50 Hz. Copper conductivity g = 56 MS/m; Steel core conductivity g = 10 MS/m; Magnetic permeability of the steel core:

https://quickfield.com/harmonics_analysis_online.htm

Coil with ferromagnetic core

https://quickfield.com/advanced/hmagn4.htm https://quickfield.com/advanced/tecircuit1.htm

https://quickfield.com/harmonics_analysis_online.htm

Plane capacitor

Problem specification:

Relative permittivity of substrate $\varepsilon = 10$ Voltage U = 5 V, frequency f = 1 MHz Loss tangent tan(δ) = 0.01

<u>Task:</u>

Calculate dielectric loss in the substrate.

https://quickfield.com/advanced/acelec1.htm

Plane capacitor

https://quickfield.com/advanced/acelec1.htm

Nonlinear capacitor

Problem specification:

Voltage 240 V, frequency f = 50 Hz

Relative permittivity ε of dielectric material:

<u>Task:</u>

Calculate current as a function of time.

Nonlinear capacitor

https://quickfield.com/advanced/telec1.htm

ISO 13786-2017. Periodic thermal transmittance

Periodic thermal transmittance Y_{12} is amplitude of the density of heat flow rate on one side when the temperature amplitude on that side is zero and there is a unit temperature amplitude on the other side.

https://quickfield.com/advanced/iso_13786_2007_case_d1.htm

ISO 13786-2017. Periodic thermal transmittance

https://quickfield.com/advanced/iso_13786_2007_case_d1.htm

This recording is over

More recordings and simulation examples at www.quickfield.com

Your feedback is welcome: support@quickfield.com