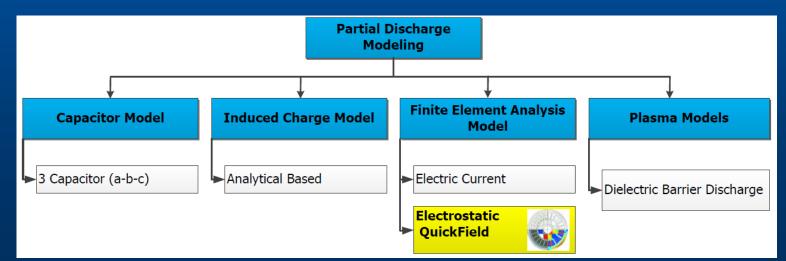

Modeling of Cable Terminations with FEA - QuickField

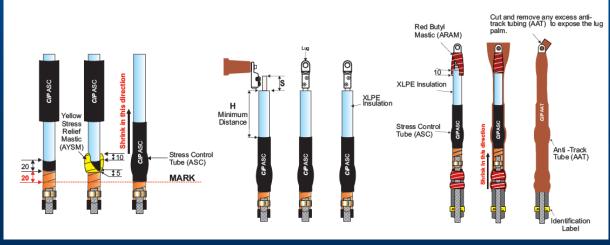

Vermaas Bissett

Importance and Reason for termination modeling

- 1. Critical component of power system
- 2. Evidence of high failure rates: MV terminations
- 3. Specialised and complicated domain
- 4. Many defects due to poor workmanship
- **5.** Understand the behaviour and root cause failure
- 6. Support factory and on-site commissioning tests
- 7. Improve Quality Assurance
- 8. Integrate: Theory, Practice and Modeling

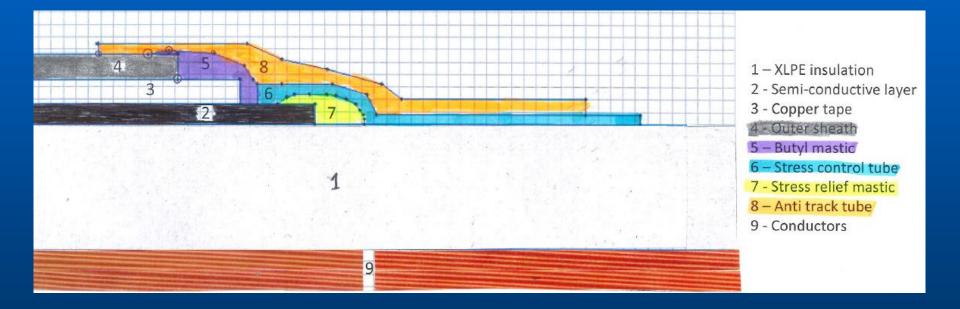
Modeling: Why Finite Element Analysis (FEA)?

- **1.** Traditionally, Partial Discharge modeling
 - **3** Capacitor model to simulate PD is most common
- **2.** Electrostatic with FEA is "attractive" alternative
 - Increase engineering understanding
 - Visual presentation
 - Electric Field strength that relates to PD

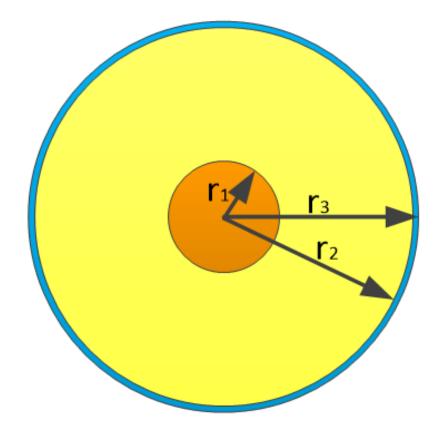


Overview of presentation and demonstration

- 1. Explain and demonstrate with QF the critical stress area at the "triple point"
- 2. 3 x QF models to be presented
 - Termination defect (ring-cut) at triple point [Axisymmetric]
 - Defect-free termination with all sub-components [Axisymmetric]
 - Cable preparation for termination [3D Extrusion]
- 3. Calculate mathematically the Electric Field strength at "triple point"


Create accurate model for Defect-Free termination

- **1.** The following aspects are important
 - Precise dimensions by following instructions
 - Material detail for all sub-components
- 2. Important sub-components include
 - Stress relieve mastic
 - Stress control tube
 - Anti track tube



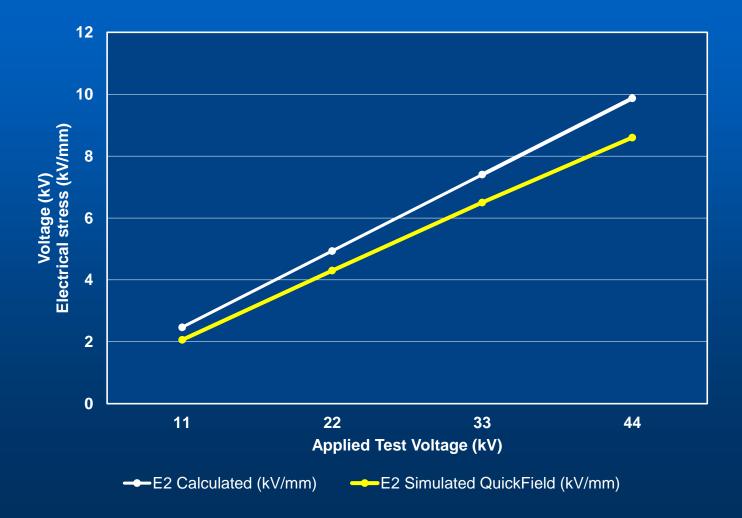
Block	Levels			
Conductor	0	80		
Insulation	0	60	80	
SemiConductive layer	0	50	80	
Copper tape	0	40	80	
Inner bedding	0	20	80	
Sheath	0	10	80	
Air	0	80		

Building the accurate QF termination model

Cable dimensions for calculations & modeling

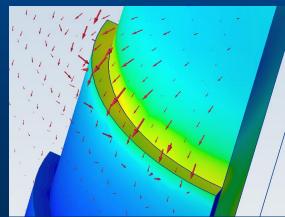
r1 = radius of conductor = 4.9mm
r2 = inner radius of air = 11.2mm
r3 = outer radius of air = 12.2mm

Formula for Electric Field Strength

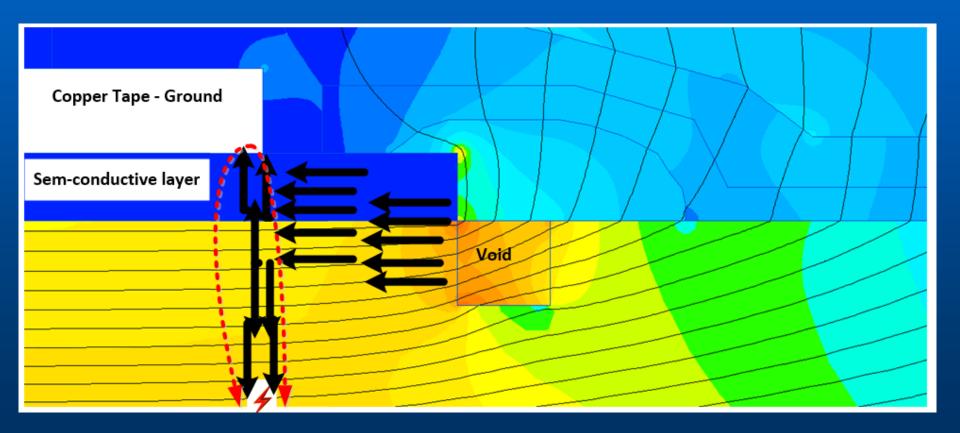

$$V_{surface} = \frac{V\epsilon_1 \ln \frac{r_3}{r_2}}{\epsilon_2 \ln \frac{r_2}{r_1} + \epsilon_1 \ln \frac{r_3}{r_2}}$$
$$E_{insulation} = \frac{V_{insulation}}{r_1 \ln \frac{r_2}{r_1}}$$
$$E_{surface} = \frac{V_{surface}}{r_2 \ln \frac{r_3}{r_2}}$$

"Some thoughts on MV Cable Accessories" Author: Derek Goulsbra

Electric Field Strength "E"Comparison Calculated versus Modelled values


Voltage (kV)	11	22	33	44
<u></u>	2.645	2.645	2.645	2.645
52	1	1	1	1
r1	4.9	4.9	4.9	4.9
r2	11.2	11.2	11.2	11.2
rЗ	12.2	12.2	12.2	12.2
а	2.49	4.98	7.46	9.95
b	1.05	1.05	1.05	1.05
V ₂ Voltage on surface of insulation (kV) [1mm air gap]	2.36	4.73	7.09	9.45
V ₂ Voltage on surface of insulation (kV) peak [1mm air gap]	3.34	6.68	10.03	13.37
V1 (KV)	8.64	17.27	25.91	34.55
E ₁ stress at conductor	2.13	4.26	6.40	8.53
E ₂ Calculated (kV/mm)	2.47	4.93	7.40	9.87
E2 peak stress at insulation/air interface (kV/mm)	3.49	6.98	10.47	13.96
E ₂ Simulated QuickField (kV/mm)	2.06	4.3	6.5	8.6

Electric Field Strength "E"Comparison Calculated versus Modelled values



Observations

- **1.** Model and build cable terminations successfully
- 2. Evaluate electric field strength in relation to variations and applied voltage.
- **3.** Modeling defects and prepared cable ends
- 4. Confirm high stress area in termination "triple point"
- **5.** Importance of dimensions and material details
- 6. Correlation between "Theory-Practice-Modeling"

Defect developing from void to high voltage & ground

Conclusions

- 1. Excellent correlation between calculated and simulated values for Eletric Field Intensity
- 2. Confirm "triple point" is most critical
- **3.** FEA simulation with QF adds value:
 - Application of termination to end user
 - Engineer to understand and comprehend practice and theory
 - Designers of cable terminations

The End

Thank you!