

DC Magnetic simulation with QuickField

Vladimir Podnos

Director of Marketing and Support Tera Analysis Ltd.

Alexander Lyubimtsev

Support Engineer Tera Analysis Ltd.

QuickField Analysis Options

Magnetic analysis suite	Magnetostatics
	AC Magnetics
	Transient Magnetic
Electric analysis suite	Electrostatics (2D,3D) and DC Conduction (2D,3D)
	AC Conduction
	Transient Electric field
Thermostructural analysis suite	Steady-State Heat transfer (2D,3D)
	Transient Heat transfer
	Stress analysis

MultiPhysics (2D)

Stresses & Deformations

QuickField API

https://quickfield.com/programming.htm

QuickField Magnetostatics

Magnetic analysis suite	Magnetostatics
	AC Magnetics
	Transient Magnetic
Electric analysis suite	Electrostatics (2D,3D) and DC Conduction (2D,3D)
	AC Conduction
	Transient Electric field
Thermostructural analysis suite	Steady-State Heat transfer (2D,3D)
	Transient Heat transfer
	Stress analysis

QuickField Workflow

Geometry definition using the Model editor

Specifying the material properties, field sources and boundary conditions
Using the Data Editor

Results analysis using the Postprocessor

QuickField Magnetostatics. Problem setup

https://quickfield.com/dcmag.htm

QuickField Magnetostatics. Geometry

QuickField Magnetostatics. Label properties

Edge

QuickField Magnetostatics. Results

Results analysis is the most complicated part, having more options. Generally the following types of result analysis are available:

Field maps showing the space distribution of different field parameters

Field parameters in arbitrary point

Contour analysis, including field parameters distribution and integral calculations

https://quickfield.com/post.htm

QuickField Magnetostatics. Results

Field maps

Local field data

Integrals

QuickField Difference

Magnetostatics simulation with QuickField

Nonlinear permanent magnet

Solenoid actuator force

magnet to the steel plate

Superconductor **levitation**

Halbach array

https://quickfield.com/seminar/seminar_dc_magn.htm

Armature winding inductance

Nonlinear permanent magnet

Problem specification:

The permanent magnets coercive force is 147 kA/m,

Task:

Calculate the force as a function of the yoke position.

Nonlinear permanent magnet

Solenoid actuator force

Problem specification:

Current density in the coil $j = 1 \text{ A/mm}^2$;

The BH-curve for the core and the plunger:

24 cm

Task:

Calculate the force as a function of the plunger position.

https://quickfield.com/advanced/magn2.htm

Solenoid actuator force

https://quickfield.com/advanced/magn2.htm

Armature winding inductance

Problem specification:

3-phase stator winding scheme: A-A, Z-Z, B-B, X-X, C-C, Y-Y, slot current 200 A, number of turns 100,

Permanent magnet coercive force $H_c = 820 \text{ kA/m}$, remanence Br = 1.1 T;

Steel core B-H curve:

Task:

Calculate the phase coil inductance for the normal operating conditions.

Armature winding inductance

Attraction of the block magnet to the steel plate

Task:

Calculate the pulling force of the magnet attraction to the steel plate.

Attraction of the block magnet to the steel plate

Brooks coil

https://quickfield.com/advanced/brooks_inductor.htm

Brooks coil

L Inductance Wizard

- 🖶 🛅 From Flux Linkage
 - --- Flux Linkage: Φ = 0.0020334 (Wb)
 - Current: I = 1 (A)
 - Inductance: L = 0.002033 (H)
- 🚊 📵 From Energy
 - Stored Energy W = 0.0010164 J
 - ··· Current: I = 1 (A)
 - Inductance: L = 0.002033 (H)

Halbach array

D = 0.5 inch, H = 0.5 inch,

Problem specification:

Permanent magnet coercive force Hc = 750 kA/m; remanence Br = 1.1 T

Task:

Calculate the magnetic field distribution.

Halbach array

Superconductor levitation

Problem specification:

Permanent magnet coercive force Hc = 575 kA/m

Task:

Calculate the magnetic force acting on a superconductor.

This example is prepared by Gyore Attila, Gyurki Peter, Janko Arpad. Department of Electrical Machines and Drives, Technical University of Budapest

Superconductor levitation

This recording is over

More recordings and simulation examples at www.quickfield.com

Your feedback is welcome: support@quickfield.com