Eddy currents simulation with QuickField

Vladimir Podnos, Director of Marketing and Support, Tera Analysis Ltd.

Introduction

Alexander Lyubimtsev Support Engineer Tera Analysis Ltd. Live demonstration

https://quickfield.com/seminar/seminar_eddies.htm

Eddy currents

QuickField Analysis Options

Magnetic analysis suite							
Magnetic Problems	Magnetostatics						
	AC Magnetics						
	Transient Magnetic						
Electric analysis suite							
Electric Problems	Electrostatics (2D,3D) and DC Conduction (2D,3D)						
	AC Conduction						
	Transient Electric field						
Thermostructural analysis suite							
Thermal and mechanical problems	Steady-State Heat transfer (2D,3D)						
	Transient Heat transfer						
	Stress analysis						

https://quickfield.com/pack.htm

MultiPhysics (2D)

MultiPhysics (2D)

Source problem		> <mark>7</mark>	> Transferred data > De			stination problem	
Destination: Source:	DC magnetics	AC magnetics	Transient magnetics	Static hea transfer	t Transient heat transfer	Stress Analysis	
DC magnetics	Magnetic permeability	Magnetic permeability	Initial magnetic field			Force	
AC magnetics				Joule hea	t Joule heat	Force	
Transient magnetics			Initial magnetic field	Joule hea	t Joule heat	Force	
Electrostatics						Force	
DC conduction				Joule hea	t Joule heat		
AC conduction				Joule hea	t Joule heat	Force	
Transient electric							
Static heat transfer		Temperature			Initial temperatures	Temperature	
Transient heat transfer		Temperature			Initial temperatures	Temperature	
Stress Analysis							

https://quickfield.com/coupling.htm

Ł

Open object interface

https://quickfield.com/programming.htm

QuickField Difference

Eddy currents simulation with QuickField

https://quickfield.com/seminar/seminar_eddies.htm

Slot embedded conductor skin effect

30 mm

Problem specification:

Ampere-turns in the coil I = 750 A Steel magnetic permeability = 2000

Task:

Determine the dependence of the attraction force on the distance between the rotor and the electromagnet.

https://quickfield.com/advanced/toe_lab1.htm

Proximity effect

Problem specification:

Ampere-turns in the coil I = 750 ASteel magnetic permeability = 2000

Task:

Determine the dependence of the attraction force on the distance between the rotor and the electromagnet.

https://quickfield.com/advanced/toe_lab3.htm

Stranded wire

Problem specification:

Conductor current I = 1 A (magnitude)

Frequency f = 50 kHz

Ferrite magnetic permeability = 500

Task:

Calculate Joule losses in the stranded wire winding.

https://quickfield.com/advanced/stranded_wire.htm

Litz wire losses

5.8 mm

Problem specification:

Ampere-turns in the coil I = 750 A Steel magnetic permeability = 2000

Task:

Determine the dependence of the attraction force on the distance between the rotor and the electromagnet.

https://quickfield.com/advanced/litz_wire.htm

Induction pump

Problem specification:

Coil ampere-turns *I* = 750 A Steel magnetic permeability = 2000

Task:

Determine the dependence of the attraction force on the distance between the rotor and the electromagnet.

https://quickfield.com/advanced/hmagn5_induction_pump.htm