

Induction motors simulation with QuickField

Vladimir Podnos

Director of Marketing and Support Tera Analysis Ltd.

Alexander Lyubimtsev

Support Engineer Tera Analysis Ltd.

QuickField Analysis Options

Magnetic analysis suite	Magnetostatics	
	AC Magnetics	
	Transient Magnetic	
Electric analysis suite	Electrostatics (2D,3D) and DC Conduction (2D,3D)	
	AC Conduction	
	Transient Electric field	
Thermostructural analysis suite	Steady-State Heat transfer (2D,3D)	
	Transient Heat transfer	
	Stress analysis	

MultiPhysics (2D)

Stresses & Deformations

QuickField API

https://quickfield.com/programming.htm

QuickField Difference

Induction motors simulation with QuickField

Rotating magnetic field boundary condition

 $T = +20^{\circ}C$ Wedge Insulation Steel Ø 15 mm Cooling T = +40°C Ø 690 mm

Slot heating

Rotating magnetic field boundary condition

Problem specification:

Stator produces sinusoidal rotating magnetic field.

Copper conductivity $\sigma = 63$ MS/m; Number of poles 2p = 2; Frequency f = 60 Hz.

Task:

Calculate the torque and rotor heating.

Rotating magnetic field boundary condition

Rotating magnetic field boundary condition

AC Magnetics

Outer boundary Air ω1 Copper cylinder ω2

Problem specification:

Stator produces sinusoidal rotating magnetic field with angular velocity ω1 Rotor angular velocity ω2

Task:

Calculate the torque and rotor heating.

https://quickfield.com/glossary/rotating_magnetic_field.htm

Rotating magnetic field boundary condition. AC Magnetics

Slot embedded conductor skin effect

Problem specification:

Conductivity of copper $\sigma = 58$ MS/m Current in the conductor I = 1 A Frequency f = 45 Hz

Task:

Determine current distribution within the conductor and complex impedance of the conductor.

* Reference: A. Konrad,
Integrodifferential Finite Element
Formulation of Two-Dimensional
Steady-State Skin Effect
Problems, IEEE Trans. Magnetics,
Vol MAG-18, # 1, January 1982.

Slot embedded conductor skin effect

	External current density, A/m²	
QuickField	10183 + j27326	
Reference*	10182.7 + j27327.9	

* Reference: A. Konrad, <u>Integrodifferential</u>
<u>Finite Element Formulation of Two-</u>
<u>Dimensional Steady-State Skin Effect</u>
<u>Problems</u>, IEEE Trans. Magnetics,
Vol MAG-18, # 1, January 1982.

Slot heating

 $T = +20^{\circ}C$

Problem specification:

Specific copper loss $Q = \rho^* j^* j = 160 \text{ kW/m}^3$; Thermal conductivity of materials: insulation 0.15 W/K-m, copper 380 W/K-m, steel 25 W/K-m, wedge 0.25 W/K-m.

Convection coefficient: outer surface 10 W/K-m², inner surface 70 W/K-m², cooling duct 50 W/K-m²

Task:

Calculate temperature distribution in the stator tooth zone of an electric machine.

https://quickfield.com/advanced/heat1.htm

Ø 690 mm

Slot heating Legend Values Temperature T (°C) - Physical Quantities 90 Heat flux • Φ = -61.97 W 86 Temperature difference 82 - Average surface temperature 78 • T_e = 61.142 °C 74 Values 70 Physical Quantities Heat flux 62 58 Temperature difference Values 54 Average surface temperature ☐ ☐ Physical Quantities 50 T_c = 66.555 °C Heat flux Φ = -27.663 W Temperature difference

https://quickfield.com/advanced/heat1.htm

Problem specification:

Conductivity of copper $\sigma_1 = 46.8$ MS/m; Conductivity of aluminum $\sigma_2 = 31.1$ MS/m;

Task:

Calculate torque, current, Joule heat losses in the rotor at various rotation speeds

Rotation velocity	Rotor currents	Bar conductivity in the model
0 - stall		σ_2
Slip: 0< <i>n</i> <n<sub>0</n<sub>		$\sigma_2 * (1 - n / n_0)$
Synchronous	0	0

Induction motor

Linear electric motor

Problem specification:

Core magnetic permeability $\mu = 1000$;

Rail conductivity $\sigma = 33$ MS/m;

Frequency f = 50 Hz.

Slot total current I = 1844 A (r.m.s)

Task:

Calculate propulsion force acting on the rail and Joule heat losses

https://quickfield.com/advanced/perio2.htm

Linear electric motor

This recording is over

More recordings and simulation examples at www.quickfield.com

Your feedback is welcome: support@quickfield.com