## Electric capacitance calculation with QuickField Part 2. 3D Analysis



Vladimir Podnos, Director of Marketing and Support, Tera Analysis Ltd.

Overview



Alexander Lyubimtsev Support Engineer Tera Analysis Ltd.

QuickField 3D live demonstration

### Capacitance between two conductors

٢

U = 0



Capacitance: C = q / (U2 - U1)

## **QuickField analysis options**

| Magnetic analysis suite               |                                                  |
|---------------------------------------|--------------------------------------------------|
| Magnetic Problems                     | Magnetostatics                                   |
|                                       | AC Magnetics                                     |
|                                       | Transient Magnetic                               |
| Electric analysis suite               |                                                  |
| Electric Problems                     | Electrostatics (2D,3D) and DC Conduction (2D,3D) |
|                                       | AC Conduction                                    |
|                                       | Transient Electric field                         |
| Thermostructural analysis suite       |                                                  |
| Thermal and<br>mechanical<br>problems | Steady-State Heat transfer (2D,3D)               |
|                                       | Transient Heat transfer                          |
|                                       | Stress analysis                                  |



# Electric capacitance calculation with QuickField



## Electric capacitance calculation with QuickField Part 2. 3D analysis



Vladimir Podnos, Director of Marketing and Support, Tera Analysis Ltd.

Overview



Alexander Lyubimtsev Support Engineer Tera Analysis Ltd.

QuickField 3D live demonstration

#### Sphere to sphere capacitance



https://quickfield.com/advanced/non-concentric\_spheres\_capacitance.htm

#### **Spherical capacitor**

 $\frac{4\pi\varepsilon\varepsilon_0}{1\quad 1}$ 

r

 $\overline{R}$ 



https://quickfield.com/advanced/spherical\_capacitor.htm

### **Spherical capacitor with foil**



Input data:

$$C' = \frac{4\pi\varepsilon'\varepsilon_0}{\frac{1}{r} - \frac{1}{a}} \qquad C'' = \frac{4\pi\varepsilon''\varepsilon_0}{\frac{1}{a} - \frac{1}{R}}$$

**Capacitance:** 

*C*′ = 200 pF, *C*″ = 133 pF

### **Prepulse switch**



Input data:

$$U$$
+ = 4 MV

https://quickfield.com/advanced/prepulse\_switch.htm