Power transmission lines simulation with QuickField. Part 2

Vladimir Podnos, Director of Marketing and Support, Tera Analysis Ltd.

Introduction

Alexander Lyubimtsev Support Engineer Tera Analysis Ltd. Live demonstration

QuickField Analysis Options

Magnetic analysis suite						
Magnetic Problems	Magnetostatics					
	AC Magnetics					
	Transient Magnetic					
Electric analysis suite						
Electric Problems	Electrostatics (2D,3D) and DC Conduction (2D,3D)					
	AC Conduction					
	Transient Electric field					
Thermostructural analysis suite						
Thermal and mechanical problems	Steady-State Heat transfer (2D,3D)					
	Transient Heat transfer					
	Stress analysis					

MultiPhysics (2D)

Source pr	oblem	> Transferred data> Destination problem			oblem	
Destination: Source:	DC magnetics	AC magnetics	Transient magnetics	Static heat transfer	Transient heat transfer	Stress Analysis
DC magnetics	Magnetic permeability	Magnetic permeability	Initial magnetic field			Force
AC magnetics				Joule heat	Joule heat	Force
Transient magnetics			Initial magnetic field	Joule heat	Joule heat	Force
Electrostatics						Force
DC conduction				Joule heat	Joule heat	
AC conduction				Joule heat	Joule heat	Force
Transient electric						
Static heat transfer		Temperature			Initial temperatures	Temperature
Transient heat transfer		Temperature			Initial temperatures	Temperature
Stress Analysis						

Open object interface

QuickField Difference

Power transmission lines simulation with QuickField. Part 1

20

20

g

δB

3,5

္က

4

С. m

1. Parallel wires capacitance. 2. Transmission line capacitance. 3. Fiber-optic cable and electric transmission line. 4. Parallel wires inductance. 5. Transmission line transposition. 6. Phase-to-phase fault. 7. Disc insulator. Heating. 8. Disc insulator. Mechanical stress.

https://quickfield.com/seminar/seminar_tline.htm

Power transmission lines simulation with QuickField. Part 2

Alexander Lyubimtsev Support Engineer Tera Analysis Ltd.

- 1. Single-wire earth return (SWER)
- 2. Faraday cage
- 3. Transmission line electromagnetic compatibility (EMC)
- 4. Grading ring
- 5. High frequency line trap

https://quickfield.com/seminar/seminar_tline2.htm

Single-wire earth return (SWER)

Conductor • I = 10 A

Problem specification:

Power line current I = 10 AAC frequency f = 50 HzLine length L = 10 km. Soil conductivity 1 mS/m Rock conductivity 0.1 mS/m

<u>Task:</u>

Determine the distribution of the reverse current density in the ground.

Single-wire earth return (SWER)

https://quickfield.com/advanced/swer.htm

Faraday cage

HV conductor Faraday cage 10 m E S *S*i Protected area

Problem specification:

Relative permittivity of air: 1

Transmission line electric potential HV = 330 kV (RMS, line voltage).

<u>Task:</u>

Calculate the electric field stress distribution under the Faraday cage and compare the electric stress at the height 2 m with the safe level 10 kV/m.

Transmission line electromagnetic compatibility (EMC)

ABC	18 m	ABC
≋ 250 A, 50 Hz ຣ ຼ		Problem specification: Copper electrical conductivity 60 MS/m Soil electrical conductivity: 0.02 S/m
		<u>Task:</u> Find the induced voltages
	Soil	line per 10 km of its length.

https://quickfield.com/advanced/tline_emc.htm

rransmission line electromagnetic compatibility (EMC)

https://quickfield.com/advanced/tline_emc.htm

Ł

https://quickfield.com/advanced/grading ring.htm

Grading ring

https://quickfield.com/advanced/grading_ring.htm

High frequency line trap

https://quickfield.com/advanced/high_frequency_line_trap.htm

Problem specification:

Current (peak value) 12 kA, AC frequency = 50 Hz Aluminum Young's modulus E = 70 GPa; Poisson's ratio v = 0.34;

> Fiberglass Young's modulus E = 20 GPa; Poisson's ratio v = 0.11;

Task:

Calculate inductance, forces, mechanical stress