Transformers design. Part 2

Vladimir Podnos, Director of Marketing and Support, Tera Analysis Ltd.

Introduction

Alexander Lyubimtsev Support Engineer Tera Analysis Ltd. Live demonstration

QuickField Analysis Options

Magnetic analysis suite					
Magnetic Problems	Magnetostatics				
	AC Magnetics				
	Transient Magnetic				
Electric analysis suite					
Electric Problems	Electrostatics (2D,3D) and DC Conduction (2D,3D)				
	AC Conduction				
	Transient Electric field				
Thermostructural analysis suite					
Thermal and mechanical problems	Steady-State Heat transfer (2D,3D)				
	Transient Heat transfer				
	Stress analysis				

MultiPhysics (2D)

Source pr	oblem	> <mark>7</mark>	> Transferred data> Destination problem			
Destination: Source:	DC magnetics	AC magnetics	Transient magnetics	Static heat transfer	Transient heat transfer	Stress Analysis
DC magnetics	Magnetic permeability	Magnetic permeability	Initial magnetic field			Force
AC magnetics				Joule heat	Joule heat	Force
Transient magnetics			Initial magnetic field	Joule heat	Joule heat	Force
Electrostatics						Force
DC conduction				Joule heat	Joule heat	
AC conduction				Joule heat	Joule heat	Force
Transient electric						
Static heat transfer		Temperature			Initial temperatures	Temperature
Transient heat transfer		Temperature			Initial temperatures	Temperature
Stress Analysis						

Open object interface

QuickField Difference

Transformers design. Part 1

- 1. Single phase transformer. No load test. Short circuit test.
- 2. Flyback (pulse) transformer EMC.
- 3. Three phase transformer. Nonsymmetrical load.
- 4. Transformer heating. Winding and core losses.
- 5. Mechanical stress in transformer windings.
- 6. Transformer tank 3-phase bushing insulator.

https://quickfield.com/seminar/seminar_transformer.htm

Transformers design. Part 2

Alexander Lyubimtsev Support Engineer Tera Analysis Ltd.

- 1. Step lap joint magnetic field
- 2. Welding transformer output power
- 3. Electric arc furnace transformer short circuit (transformer stray flux)
- 4. End-winding insulation
- 5. Oil electric stress 3D

https://quickfield.com/seminar/seminar_transformer2.htm

Step lap joint

E	
E Steel	
2	
0	
×	
N	

Problem specification:

Steel permeability – B(H) curve Average magnetic flux density ~1.9 T

Task:

Obtain the magnetic field distribution in the core and surrounding air. Locate the saturated core areas

https://quickfield.com/advanced/step_lap_joint.htm

Step lap joint

Flux density in the core

https://quickfield.com/advanced/step_lap_joint.htm

Welding transformer output power

Problem specification:

C = 1 pF, R = 0..10 Ohm Frequency f = 60 Hz Primary voltage = 220 V

https://quickfield.com/advanced/circuit2.htm

<u>Task:</u>

Calculate the output voltage $U_2(I_2)$

Welding transformer output power

https://quickfield.com/advanced/circuit2.htm

Furnace transformer short circuit

Problem specification:

Primary current I = 25 A Frequency f = 50 Hz Winding connection scheme Δ - Δ

<u>Task:</u>

Estimate the transformer short circuit voltage, axial forces in the windings, build the stray fluxes field picture.

https://quickfield.com/advanced/transformer_stray_flux.htm

Furnace transformer short circuit

https://quickfield.com/advanced/transformer_stray_flux.htm

End-winding insulation

https://quickfield.com/advanced/end_winding_insulation.htm

End-winding insulation

https://quickfield.com/advanced/end_winding_insulation.htm

Oil electric stress 3D

https://quickfield.com/advanced/transformer electric stress.htm

Oil electric stress 3D

https://quickfield.com/advanced/transformer_electric_stress.htm