A new approach to field modelling

Language:
de dk es fr it cz ru cn


RSS Twitter Facebook Linkedin YouTube

>> >> >>

Conducting sphere inside capacitor

An uncharged conductive sphere is placed inside a charged parallel plate capacitor.

Problem Type: electrostatics.

Geometry: Axisymmetric / 3D import.

conducting sphere inside capacitor

Given:
Sphere radius: r = 1 mm;
Distance between the plates: d = 10 mm;
Dielectric permittivity: ε = 4;
Plate size: A = 100x100 mm2;
Voltage applied: V+ = 24 V.

Problem:
Find the electric field stress in the dielectric.

Solution:
To overcome 3D import limitations (only single body topology is allowed) we subtract the sphere from the dielectric body and import the resulting single body.
This problem could be simulated in 2D axisymmetric formulation if we replace square plates with discs of the same area (πD2/4 = A).
This modification preserves the inner field strength and the geometric capacitance values (~A/d).

To model the conducting body with unknown potential we set the electric permittivity to a very high value (10000). This effectively makes the body's surface equipotential (as the real conductor' surface would be).

Results:
Analytical solution:
External uniform electric field E0x = U / d = 24/10 = 2.4 [V/mm] = 2400 [V/m].
Electric potential outside the sphere U(x) = E0x * (r3/x2 - x) [V]

Electric field distribution inside the dielectric:

conducting sphere stress inside capacitor

Electric potential distribution inside the dielectric:

conducting sphere inside capacitor voltage

View movie Download video

Watch online on YouTube.

Download Download simulation files (files may be viewed using any QuickField Edition).

There are no restrictions applied to the QuickField Student Edition postprocessors.
You can view field maps, make plots, calculate integrals and print pictures in the same way that the Professional Edition users do.