A new approach to field modelling

Language:
Language Global English Deutsch Espanol Francais Italiano Danmark Ceske Chinese no-Pyccku


RSS Twitter Facebook Linkedin YouTube

>> >> >>

Charged particle trajectory in the uniform static magnetic field. Case: plane-parallel.

Problem Type:
Plane-parallel problem of DC magnetics.

Geometry:

Particle trajectory in static magnetic field.

Given:
Relative permeability of vacuum μ = 1;
External field flux density Bx = -4 mT.
Charge (electron) q = -1.602e-19 C;
Mass (electron) m = 9.109e-31 kg;
Initial velocity vx=vy=5e6 m/s; vz = 0 m/s.
Emitter position (0; 0; 0).

Problem:
Calculate charged particle trajectory in magnetic field neglecting relativistic effects.

Solution:
The analytical solution gives spiral trajectory.
Radius in YZ-plane RYZ = vy / Bx * m/q [m].
Period T = 2π / Bx * m/q [s].
Lorentz force Fz = q*vy*Bx [N].

To calculate the particle trajectory in QuickField free tool TrajectoryTracer is used.

Results:

Analytical solution:
Radius in YZ-plane RYZ = (5e6/0.004) * (9.109e-31/1.602e-19) = 0.00711 m.
Period T = (2*3.142/0.04) * (9.109e-31/1.602e-19) = 8.93e-9 s.
Lorentz force Fz = 1.602e-19 * 5e6 * 0.04 = 3.20e-15 N.

TrajectoryTracer tool:
Radius in YZ-plane RYZ = 0.14215/2 = 0.00711 m.
Period T = 4.47e-9*2 = 8.94e-9 s.
Lorentz force Fz = 3.20e-15 N.

charged particle in magneti field simulation

Watch on YouTube.

Download PDF icon View simulation report in PDF.

Download Download simulation files (files may be viewed using any QuickField Edition).

QuickField 6.3 Service pack 2