A new approach to field modelling

Language:
de dk es fr it cz ru cn


RSS Twitter Facebook Linkedin YouTube

>> >> >>

Charged particle trajectory in the uniform static magnetic field. Case: plane-parallel.

Problem Type:
Plane-parallel problem of DC magnetics.

Geometry:

Particle trajectory in static magnetic field.

Given:
Relative permeability of vacuum μ = 1;
External field flux density Bx = -4 mT.
Charge (electron) q = -1.602e-19 C;
Mass (electron) m = 9.109e-31 kg;
Initial velocity vx=vy=5e6 m/s; vz = 0 m/s.
Emitter position (0; 0; 0).

Problem:
Calculate charged particle trajectory in magnetic field neglecting relativistic effects.

Solution:
The analytical solution gives spiral trajectory.
Radius in YZ-plane RYZ = vy / Bx * m/q [m].
Period T = 2π / Bx * m/q [s].
Lorentz force Fz = q*vy*Bx [N].

To calculate the particle trajectory in QuickField free tool TrajectoryTracer is used.

Results:

Analytical solution:
Radius in YZ-plane RYZ = (5e6/0.004) * (9.109e-31/1.602e-19) = 0.00711 m.
Period T = (2*3.142/0.04) * (9.109e-31/1.602e-19) = 8.93e-9 s.
Lorentz force Fz = 1.602e-19 * 5e6 * 0.04 = 3.20e-15 N.

TrajectoryTracer tool:
Radius in YZ-plane RYZ = 0.14215/2 = 0.00711 m.
Period T = 4.47e-9*2 = 8.94e-9 s.
Lorentz force Fz = 3.20e-15 N.

View movie Download video.

Watch online on YouTube.

Download PDF icon View simulation report in PDF.

Download Download simulation files (files may be viewed using any QuickField Edition).

There are no restrictions applied to the QuickField Student Edition postprocessors.
You can view field maps, make plots, calculate integrals and print pictures in the same way that the Professional Edition users do.