A new approach to field modelling

Language:
de dk es fr it cz ru cn


RSS Twitter Facebook Linkedin YouTube

>> >> >>

Quadrupole charge

Charges are placed in the vertices of the 1x1 [m] square.

Problem Type: electrostatics.

Geometry: 3D extrusion.

quadrupole electric charges model

Given:
Relative permittivity of air εr = 1,
Electron charge q = 1.602e-19 C.
Quadrupole charges Q1 = 1*q, Q2 = 2*q, Q3 = 3*q, Q4 = -6*q.

Task:
Calculate the electric field stress distribution along z axis.

Solution:
Analytical solution is based on the equation derived from Coulomb's law*:
E(z) = k * q/r2 [V/m], where
k=8.988e9 [N·m2 / C2] is a Coulomb's constant,
r - distance from the charge q.

For any arbitrary point on axis z we can find the electric field stress components produced by each charge.
Total electric field stress components are:
Ex(z) = k / r2 * cos(β) * (-Q1*cos(α1) - Q2*cos(α2) - Q3*cos(α3) - Q4*cos(α4)),
Ey(z) = k / r2 * cos(β) * (-Q1*sin(α1) - Q2*sin(α2) - Q3*sin(α3) - Q4*sin(α4)),
Ez(z) = 0.
where β - elevation angle,
α - angle in the plane XY between vectors O-X and O-charge.
(in our model α1 = 3π/4, α2 = π/4, α3 = -π/4, α4 = -3π/4).

Results:
Analytical solution for z=0: cos(β) = 1, r=0.707 m;
Ex(0) = 8.988e9 / (0.707)2 * 1 * ( -q*cos(3π/4) - 2q*cos(π/4) - 3q*cos(-π/4) + 6q*cos(-3π/4)) = 1.271e10*(-10q) = 2.04e-8 V/m;
Ey(0) = 8.988e9 / (0.707)2 * 1 * ( -q*sin(3π/4) - 2q*sin(π/4) - 3q*sin(-π/4) + 6q*sin(-3π/4)) = 1.271e10*(-6q) = 1.22e-8 V/m;
Ez(0) = 0 V/m.

Electric field stress calculated in QuickField:

quadrupole electric field

*Reference: Coulomb's law in Wikipedia.

Download Download simulation files (files may be viewed using any QuickField Edition).

There are no restrictions applied to the QuickField Student Edition postprocessors.
You can view field maps, make plots, calculate integrals and print pictures in the same way that the Professional Edition users do.