d=1 mm, h=10 mm.
The length of capacitor in z direction is l = 10 mm.

Given: Relative permittivity of substrate ε = 2.3.
Loss tangent tgδ = 0.75%.
Voltage U = 220 V,
Frequency f = 100 kHz.

Task: Calculate dielectric losses in capacitor.

Solution: Capacitor with nonideal dielectric can be represented by electric circuit with ideal capacitor C and resistivity R connected in parallel, so that R corresponds to the insulation resistance.
For plane capacitor the capacitance can be calculated as C = εε_{0}·S/d, where S=l·h is a plate surface area.
For plane capacitor the resistance can be calculated as R = (1/γ)·d/S

In the AC conduction problems electric conductivity (γ) of materials should be set. We can derivate the electric conductivity value using the formulae:
tg(δ) = X_{C}/R, where
X_{C} - capacitor reactance, X_{C} = 1 / 2πf·C,
R - capacitor resistance.

After substitution we have:
tg(δ) = 1/ 2πfCR = 1 / 2πf·εε_{0}·S/d·(1/γ)·d/S

Electric conductivity is γ = 2πf·εε_{0}·tg(δ)

Results: Electric conductivity is γ = 2·3.142·100000·8.854e-12·2.3·0.0075 = 0.096 uS/m.

Active power dissipated in dielectric is P_{A} = 0.46 mW.