QuickField

A new approach to field modelling
 Language: Global English Deutch Espanol Francais Italiano Danmark Ceske Chinese Pycckuü

Main >> Applications >> Sample problems >> Spherical capacitor

# Spherical capacitor

Problem Type:
Axisymmetric problem of electrostatics.

Geometry:

R = 100 mm, r=50 mm.

Given:
Relative permittivity of air ε = 1,
The charge q = 10-9 C

Problem:
Find the capacitance of spherical capacitor and compare it with analytical solution:
C = 4π·ε·ε0 · r·R / (R - r), [F]. *

Solution:
Capacitor plate's surface is marked as 'floating conductor', i.e. isolated conductors with unknown potential. At some point on spheres' surface the charge is applied. The charge is then redistributed along the conductor surface automatically.

Results:
Potential distribution inside of the spherical capacitor. The capacitance can be calculated as C = q / (U2-U1).

The measured potential difference is U2-U1 = 89.87 V.
The capacitance is C = 10-9/ 89.87 = 11.13·10-12  F

 QuickField Theoretical result C, pF 11.13 11.11
• Video: 