Language:

Main >> Product >> Components >> Charged particle trajectories in QuickField
Version 5.0 introduces the possibility to study trajectories of charged particles movement in the planeparallel and axisymmetric electrostatic fields. It utilizes our original approaches based on our implementation of FiniteElement technology^{1} and modern computational algorithms^{2}.
Trajectory calculation uses the following data:
Viewing calculation results, you see:
Calculating trajectories QuickField uses following assumptions:
According to these assumptions, we can describe the trajectory (x(t), y(t), z(t)) of a charged particle in twodimensional electrostatic field E(x, y) with Newton's system of differential equations:
We reorganize this system of three second degree equations into six firstdegree equations and append the following additional equation:
Defining the length l(t) of the trajectory covered by the particle in time t. We integrate the resulting system using the RungeKuttaMerson method with automatically defined integration step. Numerical integration stops immediately before the finite element's boundary, the step leading outside of the element being excluded. At the last point in the element, we extrapolate the trajectory with cubical segment of its Taylor series relative to time and solve the resulting equation using TartagliaCardano formula and taking into account possible decrease of the equation's degree in homogeneous or zero fields.