QuickField Modelling of Electro-Pulse-Therapy
Persson, B. R. R., Professor Emeritus at Lund University, Sweden
In electro-pulse therapy treatment, only the cells exposed to a sufficiently strong electric field will respond immediately. The tumour cells that are permeabilized become much more accessible to hydrophilic molecules since these are normally rejected by the membrane barrier. The anticancer agent Bleomycin has proven to be the most potent drug in electro-pulse therapy and is the one often used in electro-pulse chemotherapy. However, cisplatin, another anticancer agent has also been found to be effective in electro-pulse chemotherapy.
Usually, needle electrodes are used for clinical treatment of tumours with Electro-pulse Chemotherapy. A short 100 microsecond pulse with a field-strength of about 1000 V/cm is applied between a pair of electrodes inserted in the tissue to be treated. After the initial pulse, the conductivity in the tissue close to the needle electrodes increase extensively.
The aim is to investigate this effect of the initial pulse on the distribution of potential, electric field, current density and absorbed power density of the following pulses. The present investigation has been possible to perform by using the evaluation grant of QuickField Professional program kindly submitted by the QuickField Support Team.
According to the result of the present QF simulation, the average pulse strength in the centre between the electrodes will increase above the recommended 1000 V/cm after the initial pulse, causing a high degree of non-reversible electroporation in the target volume by following pulses of the same amplitude.
- Models used in this paper:
DC Currents in the live tissue with two needle electrodes
AC Currents in the live tissue with one needle electrode
AC Currents in the live tissue with two needle electrodes - Full text (in PDF format).