QuickField

A new approach to field modelling
Language:
Global English Deutch Espanol Francais Italiano Danmark Ceske Chinese Pycckuü

>> >> >>

Cylindrical rod

Cylindrical rod is loaded by tensile forces.

Problem type:
Axisymmetric problem of stress analysis.

Geometry:
Cylindrical rod is loaded by tensile forces Calculate bar elongation, the decrease in diameter and the increase in volume P=85 kN P=85 kN Aluminum alloy Ø30 mm L = 3000 mm

Given:
Rod's length L=3000 mm, cross-section diameter d = 30 mm;
Young's modulus of the aluminum alloy E = 70 GPa;
Poisson's coefficient of the aluminum alloy ν = 1/3;
Force P = 85 kN.

Task:
Calculate bar elongation, the decrease in diameter and the increase in volume.

Solution:
One of the rod's ends is fixed. The other end is loaded by the tensile force fz = P / S,
where S= 786·10-6 [m2] - is the rod cross-section area.

Volume change can be calculated by the length dL and width dr increments:
dV = (L+dL)·π·(r+dr)2 - L·π·r2.

Results:
Cylindrical rod mechanical simulation

Volume change dV = (3000+5.1536)·π·(15-0.008589)2 - 3000·π·152 = 1210.91 mm3.

Elongation dL, mm

Decrease in diameter 2·dr, mm

Increase in volume dV, mm3

QuickField

5.1536

0.017178

1210.9

Theory*

5.1557

0.017186

1214.8

Error

0.04%

0.05%

0.3%

* James M. Gere, Stephen P. Timoshenko "Mechanics of materials", Third edition (1990), pp.26-27. ISBN:0-534-92174-4.

  • Video: Cylindrical bar
  • Watch on YouTube.
  • Video: Hooke's law
  • Watch on YouTube.
  • View simulation report in PDF.
  • Download simulation files (files may be viewed using any QuickField Edition).